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1. Introduction and Contents

In this report we calculate time-independent fields of solenoidal magnets that are
suitable for ion beam transport and focusing.

Electricity and Magnetism Textbooks present the formalism for magnetic field
calculations and apply it to simple geometries [1-1], but they do not include enough
relevant detail to be very useful for designing a charged particle transport system. This
requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak
fields in coils and iron, external fields, and more. Specialized books on magnet design,
technology, and numerical computations [1-2] contain relevant detail of this type, and
some of that is presented here. The AIP Conference Proceedings of the US Particle
Accelerator Schools [1-3] contain extensive discussions of design and technology of
magnets for ion beams – except for solenoids. This lack may be due to the fact that
solenoids have been used primarily to transport and focus particles of relatively low
momentum, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV,
although this situation may be changing with the commercial availability of
superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal
laboratories and industry treat solenoid design in detail for specific applications. The
present report is intended to be a resource for the design of ion beam drivers for Inertial
Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also
be useful for a wider range of applications.

The field produced by specified currents and magnetized materials can always be
evaluated by solving Maxwell’s equations numerically, but it is also desirable to have
reasonably accurate, simple formulas for system design and fast-running beam dynamics
codes, as well as for general understanding. Most of this report is devoted to such
formulas, but an introduction to the Tosca code [1-7] and some numerical results
obtained with it are also presented. Details of design, fabrication, installation, and
operation of real magnet systems are not included. Mathematical derivations are
presented with a moderate amount of detail. While there is no claim of originality, except
for various numerical approximations and an induction module design in section 20,
many of the results and discussions are hard to find elsewhere.

Our primary topic is axisymmetric solenoidal systems with no magnetic materials.
These simplifying features allow useful analytical calculations, which occupy sections 2-
13. Deviations from axisymmetry are considered in sections 14, 15, 21, and 22, and the
effects of magnetic materials are treated in sections 16-20. Since magnetic aberrations are
mixed with geometric aberrations in computing ion orbits, section 22 on the ion equations
of motion is included.
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2. Solenoid Basics

2.1 Model assumptions and equations

We wish to calculate the field of a system of solenoidal magnets suitable for the
transport and focusing of ion beams. Generally such a field will be very strong, in the
range 2-20 T in the magnet bore and current-carrying wire. In this report we treat fields
that are constant in time and have strict solenoidal symmetry around the z-axis (except in
sections 14, 15, 21 and 22). Cylindrical coordinates (r, ,θ z) are used for the general
position vector   

€ 

 r  unless indicated otherwise. The only component of wire current density
is then J θ (r,z), which is the source of the two field components 

€ 

Br  (r,z) and zB (r,z). This

is true even when magnetic materials are present since they have only a current density
magJθ (r,z) equal to the curl of the magnetization density ( rM (r,z), zM (r,z)).

Axisymmetric induction cores, with idealized current and field components

€ 

Jr,Jz,Bθ ,Mθ( ) , are therefore not treated here.

In general the magnetization density is not independent of wire current except for
the case of stiff permanent magnet material; this feature (permeability) greatly increases
the complexity of the analysis and makes it necessary to use codes such as Poisson and
Tosca [1-7] in all but the simplest situations. Consideration of magnetic material
properties is delayed until section 16. In the absence of permeable magnetic materials,
solenoid fields may be treated analytically or with elementary codes.

Wire leads and windings are assumed to be paired such that field aberrations due
to deviations from solenoidal symmetry are cancelled down to a negligible level. This
includes cancellation of the small z component of current that is present in a single
(helical) coil of wire by returning the current in a second coil on top of it. Also, the small-
scale variations of field inside and close to individual wire or cable sections are ignored,
i.e. a smoothed model for ),( zrJθ  is adopted. In effect, the dominant, collective field

from the current density is calculated here, without any distinction between wire and
cable, and the small-scale variations are left to detailed magnet computations. However,
one must be careful when representing the actual currents by a smoothed 

€ 

Jθ (r,z). For
example the effective length and dipole moment of a magnet (see eqns. 2.11-2.14) should
be incorporated into the smoothed model.

SI units (Tesla, Ampere, meter) are used throughout this report. The relevant
Maxwell’s equations in the absence of magnetic materials are

0,0 =⋅∇=∇ BJBx


µ ,                                                                (2.1a,b)

where 

€ 

µ0 = 4πx10−7T −m A . To convert any equation to Gaussian (cgs) form, substitute

cπµ 40 → . Unit conversion factors are 1.0 Tesla= 410 Gauss, 1.0 Ampere =

2.99792…x

€ 

109 statampere, and 1.0m= 210 cm.



Since the variable r denotes distance from the z-axis,   

€ 

 r = r2 + z2  is the distance
from the coordinate origin. Assuming solenoidal symmetry, eqns. (2.1 a,b) become

€ 

∂Br
∂z

−
∂Bz
∂r

= µ0Jθ ,
1
r
∂
∂r
rBr +

∂Bz
∂z

= 0 .                                                (2.2a,b)

From these coupled first-order equations one can derive the decoupled second-order
equations:

€ 

1
r
∂
∂r
r ∂Bz
∂r

+
∂2Bz
∂z2

= −µ0
1
r
∂
∂r
rJθ ,                                                      (2.3a)
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1
02

2

∂

∂
=

∂

∂
+

∂

∂

∂

∂ θµ
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rB
rrr

r
r .   (2.3b)

The operator acting on zB  in eqns. (2.3a,b) is the scalar Laplacian in cylindrical

coordinates with 

€ 

∂ ∂θ = 0 , while the operator acting on rB  is not quite of this standard
form. In general the field equations can be solved using the Green function for the
Laplacian operator. This may seem unnecessarily complicated since integrations are over
all three spatial variables (r, ,θ z) to obtain functions of only the two variables (r,z).
However for the case of greatest interest, the thin wire layer, integrations can be easily
reduced to the single variable θ , and the analysis is not much more complicated than the
textbook case of a single wire loop. It may seem simpler to use the Biot-Savart formula
(also a Green function solution), which yields B


 from a single integration along the wire

path - see section 21, but this is somewhat misleading because the path may be very long
and must be specified by a more complicated formula than is used for the smoothed

θJ (r,z). On the other hand, the Biot-Savart formula gives fine-scale detail of the field

around the wire that is missed by the Green function approach using smoothed sources,
and is therefore useful for detailed design. We also employ Fourier and Bessel series and
transformations, several types of magnetic potential, and for really complicated cases a
finite element code.

If cartesian components and coordinates are used then eqns. (2.3 a,b) are replaced
by the compact vector form

€ 

∇2B = −µ0∇xJ  ,   (2.3c)

which can be immediately integrated using the Green function for the Laplacian operator.
It is then necessary to project 

€ 

Br  from 

€ 

B; this is only a minor complication, and is
essentially equivalent to the direct solution of eqn. (2.3b) given in section 6.



2.2 Simple field estimate

Generally we assume 0=θJ  at large   

€ 

 r . However, to make a rough estimate of

field strength we examine the infinite, uniform, thin-current layer carrying S Amperes/m:

€ 

Jθ (r,z) = Sδ(r − R)              all z,   (2.4)

where 

€ 

δ(x) is the Dirac delta function. Eqns. (2.2 a,b) then give

            

€ 

Bz = µ0SH(R − r), Br = 0 .                                              (2.5a,b)

Here H(x) denotes a positive unit step at x=0, with dH(x)/dx = 

€ 

δ(x):

€ 

H x( ) =
1, x > 0,
0, x < 0.
 
 
 

For a bore field of 1.0T we need

€ 

S =
Bz

µ0
=

1.0
4πx10−7

= 795.8 kA
m

 .                                                 (2.6)

In round numbers S=.80 MA/m for 1.0T (or 800 A/cm for 1.0 

€ 

kG) for a long magnet, but
S must be somewhat higher for short magnets. Superconducting wire or cable can carry
very high current densities at high fields, so a high field magnet can be made with a
relatively thin current layer. Examples of “engineering-averaged critical current density”
(see section 20) are:

critical fields and current density at 4.2K
superconductor wire field peak J

€ 

Nb - Ti                6.0T            

€ 

5x108 A m2

€ 

Nb3Sn                 10.0T         

€ 

7.5x108 A m2

€ 

Nb3Sn                            15.0T         

€ 

4.8x108 A m2

These current densities take into account space for Cu stabilizer, insulation, and small
gaps as well as actual superconductor. They are lower than the critical current densities
for the pure superconductor by factors of 3 -10. For example, a bore field of 10.0T may



require S≈10MA/m, which can be made (in principle) using 

€ 

Nb3Sn with current layer
thickness =

€ 

S J =107 7.5x108 = .0133m . When the radial distance from the magnet axis
out to the superconducting wire is greater than a few times the total layer thickness, we
can model the current density as an annulus of infinitesimal thickness for the purpose of
computing the field in the magnet bore. However, high field solenoids, especially those
using normal conductor, often have total current layer thickness comparable to the bore
radius or greater. This more complicated geometry is analyzed in section 9.

2.3 Current layers, global picture, and moments

For a current layer of finite thickness it is useful to define the cumulative current
layer density

€ 

S(r,z) ≡ d ′ r 
r

∞

∫ Jθ ( ′ r ,z) ,     (2.7)

with net current layer density 

€ 

S(z) = S(r = 0,z) . If S(r,z) varys slowly with z then eqns.
(2.2a,b) suggest the approximate solution

€ 

Bz ≈ µ0S(r,z),                                       (2.8a)

€ 

Br ≈ −
µ0
r

d ′ r 
0

r
∫ ′ r ∂S( ′ r ,z)

∂z
.               (2.8b)

However, most solenoids have abrupt wire layer ends, so eqns. (2.8a,b) give only a rough
approximation inside the magnet bore and wire, and they are completely incorrect at large

€ 

r . Sections 3-12 are devoted to obtaining accurate formulas for all ranges of (r,z).

To avoid confusion over notation we mention here that the symbol 

€ 

S , which
denotes current layer density and is always a radial integration of 

€ 

Jθ , appears in four
related forms depending on context: a simple scale value 

€ 

S , the cumulative density

€ 

S r,z( ), the net value 

€ 

S z( ), and the cumulative density 

€ 

S r( )  which is present when 

€ 

S r,z( )
is uniform in 

€ 

z  between specified magnet layer ends. Simple solenoids composed of
uniform thick or thin layers produce fields which are suitable for beam transport.
However, there are some applications that require a more complicated layer function

€ 

S r,z( ) within a single magnet, for example to create a very uniform bore field. Such
cases can usually be constructed by superimposing the fields of several simple layers.
The symbol 

€ 

I  denotes either current in a wire or total azimuthal current in a magnet,
depending on context. In the latter case 

€ 

I = dz∫ S z( ) .

Since   

€ 

 
∇ ⋅
 
B = 0 and   

€ 

 
B  vanishes at large   

€ 

 r  (at least as fast as   

€ 

 r −3 ), there must be a
“return flux”. The total flux through any plane with fixed coordinate z is

  

€ 

dr2πr
0

∞

∫ Bz (r,z) = 0 .                                                                 (2.9)                                         



All flux lines form closed loops at fixed values of 

€ 

θ . For a very long system the far field
(i.e. the field at large r


 greater than the system length) gets mixed up with the Earth’s

field or the fields from other sources, so the concept of return flux is actually somewhat
ambiguous. However, the external field produced close to the magnet system, usually
with the sign of zB reversed from the adjacent bore field, is of great interest – see the
figure below. For example, it may interfere with the functioning of induction cores in a
linac or with nearby instrumentation. This topic is treated in several sections – especially
section 11.

One rather expensive way to reduce or eliminate the far field is to place an
additional current layer with reverse polarity at larger radius than the primary layer. For
example a very long thin current layer of density 

€ 

S  placed at radius 

€ 

R can be surrounded
by a second layer of density 

€ 

−S 4  at 

€ 

2R , resulting in zero net flux in the region 

€ 

r < 2R .
This causes a reduction of the bore field to 

€ 

.75 µ0S . A permeable annular yoke can also
be used to confine the return flux and reduce the external field, without any reduction of
the bore field – see section 18.

For visualizing and calculating the field outside the magnet bore it is useful to
define “direct” and “residual” fields:

 

€ 

B
direct

≡ µ0S(r,z) ˆ e z ,                          (2.10a)
 
   

€ 

 
B residual ≡

 
B −
 
B direct . (2.10b)

Bore Field
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Far Field

Divergent B r

Axis
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A “direct flux” is defined as

),(),(2)( 00

2

0 0 zrJrdrzrSrdrzF
direct

θµπµπ ∫∫
∞∞

== ,     (2.11)

where we integrated by parts to obtain the last expression.

A single loop of wire of radius 

€ 

R and carrying azimuthal current I has magnetic
dipole moment 

€ 

πR2I . Magnetic moments add for a system with solenoidal symmetry, so
we have for the system’s total magnetic dipole moment 

€ 

m1:

€ 

m1 = dz
−∞

+∞

∫ drπr2
0

∞

∫ Jθ = dz
−∞

+∞

∫ F (z)
direct

µ0

= 2π dz
−∞

+∞

∫ drrS r,z( ) .
0

∞

∫
              (2.12)

Assuming 

€ 

m1 is non-zero, the field at very large   

€ 

 r , i.e. the far field (see section 11), is

€ 

Br =
µ0m1
4π

3rz

r2 + z2
5 , (2.13a)

€ 

Bz =
µ0m1
4π

2z2 − r2

r2 + z2
5  . (2.13b)

Higher order moments, which generate field components that fall off more rapidly with

  

€ 

 r , are also present. The coordinate origin can usually be positioned such that the

magnetic quadrupole moment 

€ 

m2 ~ dz drr2zJθ∫∫( ) vanishes, but higher moments are

always present.

So far we have made use of two radial moments of θJ :

€ 

S(z) = dr
0

∞

∫ Jθ (r,z) , (2.14a)

            

€ 

S(z)r2 (z) = dr
0

∞

∫ r2Jθ (r,z) = 2 drr
0

∞

∫ S(r,z) . (2.14b)



Additional radial moments weighted by θJ  such as 

€ 

Sr4 ,Sr6 , … will be used in section

(11) to evaluate the external field. Note that 42 , rr , etc. can actually be negative if θJ

reverses sign as a function of r, so they are not true mean values.

             As mentioned, care is needed when representing a magnet by a smooth current
distribution. Consider a simple wire coil of 

€ 

n  turns at radius 

€ 

R with center-to-center
longitudinal spacing 

€ 

δ . If the wire current is 

€ 

I  then the net azimuthal current is 

€ 

nI  and
the net magnetic moment is 

€ 

m1 = πR2nI . However, the effective coil length is   

€ 

 = nδ , not

€ 

n −1( )δ , since each loop would be centered in a strip of length 

€ 

δ  for an accurate finite
element calculation. The correct current layer density is   

€ 

S = nI  = I δ , which is
consistent with the value   

€ 

m1 = πR2S  obtained from eqn. (2.12). The physical length of
the coil alone, taking into account that it is actually a helix, is also   

€ 

  (plus one wire
thickness). The longitudinal current of the coil is 

€ 

I , which would be the source of an
azimuthal field for 

€ 

r > R. However, this is assumed to be cancelled by a second coil at
slightly larger radius.

2.4 Vector potential and flux lines

It is often helpful to work with one of five different magnetic potentials – see
sections 5 and 20. Here we only mention the vector potential 

€ 

A , with 

€ 

B =∇xA , which
for a solenoid may be reduced to the single component θA (r,z):

                        θ
θ rA

rr
B

z

A
B zr ∂

∂
=

∂

∂
−=

1
, .                                                           (2.15a,b)

            A flux surface is given by

                         

€ 

rAθ (r,z) =  constant.    (2.16)

This is easily shown by considering any flux line that lies on a particular flux surface.
The line has constant θ  and it is only necessary to show that θrA  is constant along it.

Since by definition the flux line element   

€ 

d r  is parallel to   

€ 

 
B , the differential of 

€ 

rAθ  along
the line is

                     ( ) 0ˆ)()()()( =⋅=−=
∂

∂
+

∂
= rdxBerdzBdrBrdz

z

rA
drrA

r
rAd rz


θ

θ
θθ ∂

.  (2.17)

             If adjacent flux surfaces have constants 

€ 

rAθ = C1  and 

€ 

C2, then the magnetic flux
contained between the two surfaces is 

€ 

2π (C2 −C1) . The mean field strength midway
between the two flux surfaces is approximately



                        

€ 

B =
C2 −C1
Δ ⋅ r

,               (2.18)

where 

€ 

Δ  is the local normal distance between the surfaces and 

€ 

r  is the radial distance to
the midpoint between the surfaces. Due to the factor of 

€ 

r−1 in eqn. (2.18), the magnitude
of 

€ 

B is not simply proportional to the inverse spacing between flux surfaces 

€ 

Δ−1( )  as is

sometimes assumed, although this can be a useful visual aid in a region where 

€ 

r  is nearly
constant. The local density of flux lines through any plane normal to 

€ 

B  can be specified

to be proportional to 

€ 

B , however this is not always done when making flux line plots. A
flux surface has the topology of a torus, and a system made of more than one magnet may
have several flux surfaces corresponding to a given value of θrA .

              Another way to generate a flux line is to solve the equation

                       

  

€ 

d r 
ds

=

 
B ( r )
B( r )

 ,   (2.19)

starting from some point on the line of interest. Here   

€ 

 r (s) is simply the parameterization
of the line, with s denoting distance along the line. For example the starting point could
be on the surface of an acceleration gap where unwanted electrons are emitted.

            2.5 Stress and energy

Material stress is not the topic of this report, but it is of major concern in the
design of high field magnets, so a simple estimate is presented here. The force density
from the field in the current carrying wire is

                         

€ 

 
J x
 
B = ˆ e rJθ Bz − ˆ e zJθ Br .                                                                           (2.20)

Since the wire is in mechanical equilibrium, this force density must equal the divergence
of the material stress tensor, which itself is proportional to components of the gradient of
the microscopic mechanical displacement field in the magnet. A detailed analysis is too
complicated to summarize here (see e.g. ref [1-2]), but it is seen from eqn. (2.20) that the
longitudinal magnetic force tends to compress a wire layer while the radial magnetic
force pushes it outwards against a restraining collar of the magnet assembly. There can be
no radial pressure in the vacuum bore, so at the collar it is approximately

                      

€ 

P ≈ dr∫ JθBz ≈
Bw
2

2µ0
,   (2.21)

where wB  is the longitudinal field at the inner wire edge of the coil – roughly the peak

bore field. Suppose TBw 0.1= , then 

€ 

P ≈ (1.0)2 2x4πx10−7( ) ≈ 4x105Pa ≈ 4.0 Bar ,



which is quite modest. However a 15.0T bore field produces roughly 900 Bar, which can
crush some insulation.

The external field of a solenoid without a permeable return yoke extends to a
large distance compared to that of a quadrupole magnet. The estimation of stresses, wire
field, etc. of a system of solenoids must therefore include the field contributions of
nearby magnets as well as that of the magnet of interest. This is particularly the case for a
transport lattice made of closely spaced solenoids.

             Since solenoidal transport systems for energetic ions are expected to have high
fields in large-bore magnets, they also have large stored field energy. In the absence of
magnetic materials this is

                       

€ 

W = d3∫ r
B
2

2µ0
  . (2.22)

For example if a 1.0 

€ 

m3  volume is filled with a 15T field, then the stored energy is

€ 

152 2x4πx10−7( )  

€ 

≈ 90MJ.

3. Near-Axis Field

For simulating beam dynamics it is often sufficient to accurately approximate the
magnetic field near the system axis, e.g. out to 50% of the radius of the nearest wire
layer. A general treatment is presented here and some useful examples of the on-axis
field are given in section 4.

3.1 On-axis field and near-axis expansion

Recall eqn. (2.3a) for zB :

         

€ 

∇2Bz = −µ0
1
r
∂
∂r
rJθ .     (3.1)

This may be formally integrated using the Green function for the 3-d scalar Laplacian
operator (see section 6):

          

€ 

Bz =
µ0
4π

d3∫ ′ r 
  

€ 

1
′ r 
∂
∂ ′ r 

′ r ′ J θ
 ′ r −  r 

 ,                                                                       (3.2)

or explicitly in cylindrical coordinates,



( )

( ) ( )θθ
θ

π

µ θπ

−′′−+′+−′

′′′
′∂

∂
′′′′′= ∫∫∫

∞∞+

∞−
cos2

,
1

4 22

2

00

0

2

rrrrzz

zrJr
rrdrrdzdBz  .         (3.3)

Here and in similar integrations we may set 0=θ inside the integrand since by symmetry

zB  is a function only of r and z. After an integration by parts in 

€ 

′ r  we get

€ 

Bz r,z( ) =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r Jθ0

∞

∫ ′ r , ′ z ( ) d ′ θ 
0

2π
∫

′ r − rcos ′ θ ( )( )
′ z − z( )2 + ′ r 2 + r2 − 2 ′ r rcos ′ θ ( )

3 .           (3.4)

This formula is completely general for a static solenoidal field, and it gives the right
answer even when the current layer extends to infinity in 

€ 

z .

To get the near-axis field, inside the bore where 0=θJ , we first define the on-

axis field:

                      ( ) ( ) ( )

( )
3

22

2

0

0
0

,

2
,0

rzz

zrJr
rdzdzrBzB z

′+−′

′′′
′′==≡ ∫ ∫

∞+

∞−

∞
θµ

  .                       (3.5)

If ( )zB0  is accurately determined from this expression or in some other way, such as

measurements on a real magnet assembly, then 

€ 

B0 z( )  may be used to generate a power
series solution of eqn. (3.1), which is valid in the magnet bore. From

                         

€ 

1
r
∂
∂r
r ∂Bz

∂r
= −

∂ 2Bz

∂z2
 ,

we get by iteration:

                        

€ 

Bz r,z( ) = B0 −
′ ′ B 0r
2

4
+

′ ′ ′ ′ B 0 r4

64
−

B0
νir6

2304
+ ... .                                  (3.6a)

The radial field component is easily obtained from 

€ 

∇ ⋅ B = 0 by integrating in r:

                       

€ 

Br r,z( ) = −
1
r

d ′ r 
0

r
∫ ′ r 

€ 

∂Bz ′ r ,z( )
∂z

= −
′ B 0r
2

+
′ ′ ′ B 0r
3

16
−

B0
ν r5

384
+

B0
νiir7

18432
− ..... .   (3.6b)

The leading term in each of the above expansions of zB and rB is used when
computing the linearized dynamics of beam ions. Higher order (non-linear in 

€ 

r ) terms are
referred to as “fringe field aberrations” in this context. A few terms from the expansions



usually give an accurate field representation inside the vacuum bore, especially near the
magnet center, but the expansion for zB fails in the wire and beyond, where the field

component generally reverses sign. The expansion for rB  often gives a fair
approximation in the wire except near the magnet ends. When truncating the expansions
after some power of r, rB should be represented by one power higher than zB in order to

preserve 0=⋅∇ B . Crossing a thin wire layer of total surface current layer density 

€ 

S z( ) ,

zB  jumps by 

€ 

−µ0S z( )  but rB  is continuous. However rB  has logarithmic singularities at
the ends of the layer – see section 8. For large || z , well beyond any magnet end, the
power series expansions are valid out to values of r comparable to the longitudinal
distance from the magnet end. But the expansions do not correctly represent the reversal
of zB  at larger values of 

€ 

r . Also, because of the high order derivatives, the expansions of

€ 

Br  and 

€ 

Bz  are difficult to apply using measured 

€ 

B0 .

By applying Stoke’s theorem to 

€ 

∇xB = µ0J , we obtain the useful general result:

€ 

dz
−∞

+∞

∫ B0 z( ) = µ0 dz S z( )
−∞

+∞

∫  .     (3.7)

This may also be derived from eqn. (3.5) using the indefinite integral (3.10a) given at the
end of this section.

For the thin semi-infinite wire layer,

                              

€ 

Jθ = SH −z( )δ r − R( )  ,                                                     (3.8)

we get from eqn. (3.5) - see section 4:

                       ( ) 








+
−=

22

0
0 1

2 Rz

zS
zB

µ
.                                                              (3.9)

In this representative case fringe field aberrations are maximum at z=0 for rB  and at

Rz 5.±≈  for zB . Approximating the fields by only two terms works well for r<.5R, but
for r=.8R (the largest value one would consider for beam transport) the convergence is
slow, as shown in the following tables. Note that the approximated 

€ 

Bz  oscillates as higher
order terms are added.



Number of expansion terms         SBz 0/µ at r=.8R, z=.5R             SBr 0/µ at r=.8R, z=0

        1                                                       .276393                                       .200000
        2                                                       .207701                                       .248000
        3                                                       .190116                                       .267200
        4                                                       .189066                                       .276160
        5                                                       .190881                                       .280676
     exact.                                                  .191960                                       .286062

Number of expansion terms         SBz 0/µ at r=.5R, z=.5R             SBr 0/µ at r=.5R, z=0

        1                                                       .276393                                       .125000
        2                                                       .249560                                       .136719
        3                                                       .246877                                       .138550
        4                                                       .246814                                       .138884
        5                                                       .246857                                       .138949
     exact.                                                  .246867                                        .138967

3.2 Useful integrals

The following (easily verified) indefinite integrals are of use in subsequent
sections:

€ 

dx

x 2 + a2
3∫ =

x
a2 x 2 + a2

, (3.10a)

€ 

dx
x 2 + a2

∫ = Log x + x 2 + a2

a

 

 
  

 

 
  = sinh

−1 x a( )  , (3.10b)

€ 

dx
x 2 − a2

= −
1
a∫ tanh−1 x

a
 

 
 
 

 
  , (3.10c)



€ 

dx
ax 2 + b( ) fx 2 + g

∫ =
1

b ag − bf( )
tan−1 x ag − bf

b fx 2 + g( )

 

 

 
 

 

 

 
 
, (3.10d)

[for 

€ 

a,b, f ,g > 0 and 

€ 

ag − bf > 0].

The surprising integral (3.10d) is used in section 9 (along with 3.10b and 3.10c) to
evaluate 

€ 

Bz r,z( )  for a uniform, thick current layer.

4. Design Formulas for the On-Axis Field

            4.1 Simple cases

To calculate the on-axis field 

€ 

B0 z( )  we may replace a moderately thick, uniform
wire layer with a thin layer at its average radius (R) with surprisingly little error – see
section 9. Making this approximation results in a number of very simple formulas. The
current density has the simple form:

€ 

Jθ r,z( ) = S z( )δ r − R( )  ,                     (4.1)

and eqn. (3.5) becomes

€ 

B0 z( ) =
µ0
2

d ′ z 
−∞

+∞

∫
R2S ′ z ( )

′ z − z( )2 + R2
3   .            (4.2)

       Case 1         Constant 

€ 

S z( ) = S  for all z:

Using the integral (3.10a) we recover eqn. (2.5a),

€ 

B0 =
µ0S
2

′ z − z( )
′ z − z( )2 + R2 −∞

+∞

= µ0S  .           (4.3)

        Case 2         Semi-infinite Layer:

€ 

S z( ) =
S, −∞ < z < z0 ,
0, z0 < z <∞ .
 
 
 

           (4.4)



A very useful formula is derived by changing the upper limit of integration over 

€ 

′ z  to 

€ 

z0
in eqn. (4.3):

€ 

B0 z( ) =
µ0S
2

′ z − z( )
′ z − z( )2 + R2 −∞

z0
=

µ0S
2
1− z − z0( )

z − z0( )2 + R2

 

 

 
 

 

 

 
 
 .        (4.5)

Note the symmetry around 0z , with 

€ 

B0 z0( ) = µ0 S 2 . We may build up many other cases

of interest by superposition using this result.

       Case 3           Lens of wire layer length  , centered at 0=z :

We apply eqn. (4.5) with positive and negative current layers ending respectively at   

€ 

 2
and   

€ 

− 2 :

                         

  

€ 

B0
lens z( ) =

µ0S
2

z +  2( )
z +  2( )2 + R2

−
z −  2( )

z −  2( )2 + R2

 

 

 
 

 

 

 
 
  .                          (4.6)

This formula is equivalent to the well-known textbook result [4-1]:

€ 

B0 =
µ0NI
2

cos θ1( ) + cos θ2( )[ ]  ,            (4.7)

where N is the number of wire loops per meter, each carrying current I, and the angles are
to points at the wire layer ends drawn from the point of interest on the z axis (see figure).
The field at the lens midpoint 

€ 

r = 0,z = 0( ) is

  

€ 

B0
lens 0( ) =

µ0S
1+ 4R 2 2

  ,            (4.8)



so a lens of length   

€ 

 = 2R  has peak field on axis reduced to

€ 

µ0 S 2 = .7071µ0S . For 

€ 

z
large, the leading order expansion term of eqn. (4.6) is

             
  

€ 

B0 →
µ0SR

2
2 z 3

  ,            (4.9)

consistent with eqn. (2.13b). The on-axis field of a short lens

  

€ 

µ0S =1.0T, R = .25m,  =1.0m( )is displayed below.

           Case 4              Periodic system of lenses of wire layer length   

€ 

 , gap length g, and
period P=  

€ 

+g:

                

€ 

B0 z( ) =
n=−∞

∞

∑ B0
lens z − nP( ) (4.10)

Case 5             Gap of length g, centered at z=0, between long solenoids:

We subtract a lens of length g from an infinitely long solenoid;

€ 

B0
gap z( ) = µ0S − B0

lens z( )  .        (4.11)

At the center of the gap



                           

€ 

B0
gap 0( ) = µ0S 1−

1
1+ 4R2 g2

 

 
 
 

 

 
 
  .        (4.12)

For g=2R, the field at the gap center is reduced to 

€ 

1−1 2( )µ0S = .2929µ0S . To prevent

large variations of 

€ 

B0  with z in a periodic system, the gaps must be very short compared
with 2R. However, this is not generally necessary for the design of a good transport
system if the ion betatron wavelength is longer than 2P.

          Case 6            Current ring of radius 

€ 

R :

            

€ 

Jθ = Iδ r −R( )δ z( ) .   (4.13)

From eqn. (3.5) or eqn. (4.2) we get

                        

€ 

B0
ring z( ) =

µ 0IR
2

2 z 2 +R 2 3
  .   (4.14)

4.2 Thick wire layer

         The on-axis field of a uniform, thick wire layer can be computed from any of the
thin layer cases by a simple average over the radial position 

€ 

R:

             

€ 

B0
thick =

dR
R2 − R1R1

R2∫ B0
thin z;R( ) , (4-15)

where 

€ 

R1 and 

€ 

R2  are the inner and outer radii of the layer. For example eqn. (4.6) for a
simple lens of length   

€ 

  gives, using the integral eqn. (3.10b):

                       

  

€ 

B0 z( ) =
dR

R2 − R1R1

R2∫ µ0S
2
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−
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4.3 Uniform fields

          Case 1            Helmholtz coil:

Two rings, each of radius 

€ 

R  and current 

€ 

I , which are separated by distance 

€ 

L , have on-
axis field, from eqn. (4.14):

                       

€ 

B0 z( ) =
µ 0IR

2

2
1

z −L 2( )2 +R 2
3 +

1

z + L 2( )2 +R 2
3

 

 

 
 
 

 

 

 
 
 
  . (4.17)

If 

€ 

L = R  then 

€ 

B0′′ 0( ) = 0. This is a simple way to make a uniform field close to the coil
center, but it is not generally useful for beam focusing since the field strength in the wire
is much larger than at the center.

          Case 2             Nearly uniform field in a long solenoid:

A large volume of strong uniform field can be made by superposing simple solenoids of
various lengths, radii and current layer densities. A mathematically simple (but
unphysical) version consists of a pair of thin-layer lenses [see eqn. (4.6)] placed
symmetrically around 

€ 

z = 0 at the same radius 

€ 

R , but with unequal lengths   

€ 

1, 2( )  and

layer densities 

€ 

S1,S2( ) . The derivatives 

€ 

B0′′ 0( )  and 

€ 

B0
iυ  both vanish if we set

  

€ 

 2
2R

=
3 1 2R( )2 +10
4 1 2R( )2 − 3

 , (4.18)

  

€ 

S2 =−S1
1
 2

 

 
 

 

 
 
1+  2 2R( )2

1+ 1 2R( )2

5

 . (4.19)

Layer #2 is shorter than #1 if   

€ 

1 2R > 2.5 , and has a reversed current. Both layers

must have   

€ 

 2R > .75 . The combined layers produce a somewhat lower field strength
than that of layer #1 alone:

( )
( ) ( ) 22
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220
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110
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2

2

2

2
0

R

S

R

S
B

+
+

+
=







 µµ
 . (4.20)



For example, taking 

€ 

µ0S1 =10.0T  and   

€ 

1 = 4.0R , we get

  

€ 

µ0S2 = −3.27097T, and  2 = 2.60177R , producing 

€ 

B0 0( ) = 6.35096T . The #1 solenoid
alone would produce 

€ 

B0 0( ) = 8.94427T . On-axis fields for the double layer at
representative points are

€ 

z R

€ 

0

€ 

± .2

€ 

± .4

€ 

± .6

€ 

± .8

€ 

±1.0

€ 

B0  6.35096  6.35096  6.35083  6.34929  6.34063  6.30777

There is essentially no variation over 25% of the bore length in this example and only
.7% variation over 50% of the bore length. Transverse variation is similarly small in these
zones.

          Case 3 Uniform field inside an ellipsoidal shell:

Although this is not particularly useful for beam transport, it is worth mentioning that an
ellipsoidal shell of constant current per meter (in z) produces an exactly constant field
inside the enclosed volume. Denoting the cumulative current layer density

€ 

S r,z( ) = S ⋅H 1− r
2

a2
−
z2

b2
 

 
 

 

 
  ,  (4.21)

where a and b are ellipse radii, then

€ 

Jθ = −
∂S r,z( )
∂r

=
2r
a2
S δ 1− r

2

a2
−
z2

b2
 

 
 

 

 
  .  (4.22)

This current pattern can be created with closely spaced wire loops each carrying current

€ 

I = SΔ , where 

€ 

Δ  is the constant longitudinal separation between loops.

Eqn. (3.5) yields

€ 

B0 z( ) =
µ0Sa2

2
d ′ z 

−b

b

∫
1− ′ z 2b2( )

′ z − z( )2 + a2 1− ′ z 2b2( )
3  , (4.23)

from which it may be numerically verified that 

€ 

B0 z( )  is actually constant for  

€ 

z < b. 

€ 

Bz  is
therefore also independent of  

€ 

r  inside the ellipsoid, and we may write

€ 

Bz
inside = µ0Sf a b( )  , (4.24)



€ 

f a b( ) =
a2

b2
dy 1− y 2( )

y 2 +
a2

b2
1− y 2( )

30

1
∫  . (4.25)

€ 

a b

€ 

0

€ 

.25

€ 

.50

€ 

1.0

€ 

2.0

€ 

4.0

€ 

∞

€ 

f  1.00000 .924593  .826436  .666667  .472800 .296359 .000000

A proof that 

€ 

Bz  is constant is mathematically related to the solution for the gravitational
potential of an ellipsoid of constant density, obtained in the Eighteenth Century [4-2]. It
is found by elementary integration that for 

€ 

a b ≡ x <1

€ 

f x( ) =
1

1− x 2
1− x 2

1− x 2
Log 1+ 1- x2

x

 

 
  

 

 
  

 

 
 
 

 

 
 
 
 , (4.26a)

and for 

€ 

a b = x >1 ,

€ 

f x( ) =
1

x 2 −1
x 2

x 2 −1
sin−1 x2 -1

x

 

 
  

 

 
  −1

 

 
 
 

 

 
 
 
 . (4.26b)

If several elliptical shells of the form (4.21 – 4.22) are superposed and all have the same
ratio 

€ 

a b, then the interior field is still given by (4.24), but with 

€ 

S =∑ Si .
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5. Vector and Scalar Potentials

The vector potential 

€ 

Aθ  and four scalar potentials, denoted here by φ , 

€ 

ϕ , 

€ 

Φ and

€ 

Ψ, are of use in calculating and visualizing solenoidal fields. Each potential has features
that make it useful for some applications and a poor choice for others. The scalar
potentials 

€ 

φ and ϕ  are defined below, while 

€ 

Φ and

€ 

Ψ are special potentials used in
Tosca and described in section 19.



5.1 Vector potential (

€ 

Aθ )

As discussed in section 2, the vector potential is useful for defining and plotting
flux surfaces. Another property of θA is that the field components

€ 

Br = −
∂Aθ
∂z
, Bz =

1
r
∂
∂r
rAθ  ,           (5.1 a,b)

automatically satisfy 

€ 

∇ ⋅ B = 0. This is an advantage in beam dynamics applications,
where the conservation of canonical angular momentum

                         

€ 

Pθ = r γMvθ + qeAθ( )                   (5.2)

for an ion of 

€ 

θ − momentum 

€ 

γMνθ  and charge 

€ 

qe , might otherwise be violated by an
approximate representation of the field; e.g. constant 

€ 

Pθ  can be used as an equation of
motion.

Unlike the scalar potential 

€ 

φ  described below, the vector potential provides a
complete (or “global”) characterization of the magnetic field, which is valid everywhere.
Its source is θJ , and if a magnetization current density 

€ 

Jθ
mag  is present, it simply adds to

the current density of the wire layer. The second order equation for θA  is

            

€ 

∂
∂r
1
r
∂
∂r
rAθ +

∂2Aθ
∂z2

=
∂Bz

∂r
−
∂Br

∂z
= −µ0Jθ  .                                              (5.3)

As with eqn. (2.3b) for rB , the operator acting on θA  is not quite the scalar Laplacian,

but this does not cause a serious problem in obtaining a Green function solution – see
section 6.

One drawback in using θA (or the scalar potentials) to calculate

€ 

B is that it must be

differentiated, which is an extra operation that can produce unnecessarily complicated
expressions. Also, derivatives generate extra errors in discretized, numerical models.
Another drawback is that 

€ 

Aθ is the azimuthal component of a vector field and must
therefore be handled carefully when transforming from a tilted magnet.

5.2 Magnetic scalar potential (

€ 

φ )



          The field in the bore of a magnetic dipole, quadrupole, or higher order magnetic
beam line element is often characterized by a magnetic scalar potential φ . For a

connected region of vacuum, where

€ 

∇xB = 0 , we can set

            

€ 

B = µ0∇φ, ∇2φ =∇ ⋅ B µ0 = 0  ,                                                  (5.4 a,b)

where the permeability of vacuum 

€ 

µ0  is inserted to be consistent with standard
convention. This is an attractive, compact formalism for aberrations, which are
represented as higher order multipoles, e.g. 

€ 

φ ~ φn r,z( )cos nθ( ) , as well as fringe field
terms. A magnetic scalar potential may also be used to characterize the bore field in a
solenoidal system.

By itself φ  cannot be a global solution. It is necessary to connect φ  to its current

source through boundary conditions or an already known component of B . For example
φ  may be assumed constant on the surface of a highly permeable material if the magnetic
field is well below saturation, e.g. TB 0.1≤  for magnetically soft iron. In fact this
formalism is most useful when magnetic materials are present, with 

€ 

H =∇φ  everywhere

outside the wire and 

€ 

B = µ0H  in vacuum –see sections 16 and 17. Another difficulty with

φ  is that it is usually multi-valued. This follows from 

€ 

B∫ ⋅ dr ≠ 0 integrated around any

loop that encloses a current layer. The idea is to position the discontinuity (if any)
somewhere such that a single branch of 

€ 

φ  can be applied in the region of interest.

Surfaces with φ  = constant have perpendicular intersections with surfaces with

€ 

rAθ  = constant. The constant φ  surfaces may be specified such that their separation is

inversely proportional to 

€ 

B  throughout the vacuum region where a scalar potential is

valid.

5.3 Global scalar potential (

€ 

ϕ )

The limitations of the magnetic scalar potential may be circumvented for a
solenoid by defining a global scalar potential 

€ 

ϕ . Let

                            

€ 

B = µ0S r,z( )ˆ e z +∇ϕ ,     (5.5)

where 

€ 

S r,z( ) is the cumulative current layer density defined in section 2 and 

€ 

J
mag

= 0 .

This formula for B  satisfies JBx 0µ=∇ . To make 0=⋅∇ B  we set

                             

€ 

∇2ϕ = −
∂
∂z

µ0S r,z( )  .     (5.6)



The term 

€ 

µ0S r,z( )ˆ e z  in eqn. (5.5) is just the previously defined direct field of the system

(see section 2), and 

€ 

∇ϕ  is the residual field (i.e. fringe field, external field, etc.). It is
clear from eqn. (5.5) that 

€ 

ϕ  is single valued since 

€ 

B −µ0S r,z( )ˆ e z  has vanishing curl.
Also, 

€ 

ϕ  is a global solution since eqn. (5.6) is valid over all space. In principle a global
scalar potential can be defined for any configuration of currents, but it is not useful unless

€ 

∇xB = µ0J  has a simple solution, as is the case for a solenoidal system.

Note that 

€ 

∇ϕ  is discontinuous at the ends of a magnet bore and it generally
subtracts from the direct field inside the bore. This is a very awkward way to treat the
field close to the axis, where it is used for beam dynamics calculations, and continuity
may be important. However, 

€ 

ϕ  gives an intuitively appealing picture of the external field
by an analogy with electrostatics, where the source on the rhs of eqn. (5.6) acts like a
charge density proportional to 

€ 

∂S r,z( ) ∂z . For a thin current layer at radius R, this source

is a pair of disks of opposite magnetic charge 

€ 

±πR2µ0S( )  at the solenoid ends. In section

11 the global scalar potential will be used to approximate the external field, which will in
turn be used to calculate the interference of fields among off-axis solenoids in section 15.

6. Green Function Solutions

6.1 Green function formalism

Any equation of the form (in 3-d)

  

€ 

∇2 f = g r( ) ,        (6.1)

with 

€ 

g r( ) = 0  at large r , may be formally integrated using the Green function

€ 

G r, ′ r ( ) =
−1

4π ′ r − r
 ;     (6.2)

€ 

f r( ) = d3∫ ′ r G r, ′ r ( )g ′ r ( ) .                 (6.3)

This works because

                         

€ 

∇2G = ′ ∇ 2G = δ ′ r − r( )  ,     (6.4)

where 

€ 

δ x( ) denotes the 3-d Dirac delta function.

We have already used 

€ 

G r, ′ r ( )  to solve for zB  in section (3):



€ 

Bz =
µ0
4π

d3 ′ r ∫ 1
′ r 
∂
∂ ′ r 

′ r ′ J θ
 

 
 

 

 
 
1
′ r − r

=
µ0
4π

d3 ′ r ∫ ′ J θ
′ r − rcos ′ θ −θ( )

′ r − r
3 .         (6.5)

Equation (5.6) for the gobal scalar potential 

€ 

ϕ  is also of the proper form for application
of the Green function:

€ 

ϕ =
µ0
4π

d3∫ ′ r ∂ ′ S 
∂ ′ z 
 

 
 

 

 
 
1
′ r − r

  .     (6.6)

Equations (2.3b) for 

€ 

Br  and (5.3) for 

€ 

Aθ  do not have the Laplacian operator, but they
may be converted to the desired form by multiplying both sides by 

€ 

cosθ , i.e.

€ 

∇2 Br cosθ( ) =
∂
∂r
1
r
∂
∂r
rBr +

∂ 2Br

∂z2
 

 
 

 

 
 cosθ = µ0

Jθ
∂z
cosθ   .     (6.7)

This yields

€ 

Br = −
µ0
4π

d3∫ ′ r ∂ ′ J θ
∂ ′ z 
 

 
 

 

 
 
cos ′ θ −θ( )

′ r − r
 ,     (6.8)

where we have used the identity

€ 

cos ′ θ ( ) = cos θ( )cos ′ θ −θ( ) − sin θ( )sin ′ θ −θ( )

inside the Green function integral. In similar fashion we get

€ 

Aθ =
µ0
4π

d3∫ ′ r Jθ ′
cos ′ θ −θ( )

′ r − r
.     (6.9)

The four Green function solutions given above all have denominators that are odd
powers of the function

€ 

′ r − r = ′ z − z( )2 + ′ r 2 + r2 − 2 ′ r r cos ′ θ −θ( )[ ]
1
2

.   (6.10)

Several simplifications can be made. First, by symmetry, we may let
θθθ ′→−′ everywhere in an integrand. Second, if a derivative with respect to z or

z′appears in the integrand, we may use the identity



€ 

∂
∂z

1
′ r − r

= −
∂
∂ ′ z 

1
′ r − r

 ,   (6.11)

integrate by parts, and sometimes get a simplification. For example, a unit step-function
of z′  can be turned into a delta function of z′ .

6.2 Explicit field expressions

Writing everything explicitly, we have

€ 

Bz =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r 
0

∞

∫ ′ r Jθ ′ r , ′ z ( ) d ′ θ 
0

2π
∫

′ r − rcos ′ θ ( )( )
′ z − z( )2 + ′ r + r2 − 2 ′ r rcos ′ θ ( )

3  .     (6.12)

Denoting the denominator in eqn. (6.12) by

€ 

.....
3
 we get for the other fields

€ 

Br = −
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
∂Jθ ′ r , ′ z ( )

∂ ′ z 0

∞

∫ d ′ θ 
0

2π
∫

cos ′ θ ( )
.....

  ,               (6.13)

€ 

Aθ =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r Jθ ′ r , ′ z ( )
0

∞

∫ d ′ θ 
0

2π
∫

cos ′ θ ( )
.....

  ,   (6.14)

€ 

ϕ =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
∂S ′ r , ′ z ( )
∂ ′ z 0

∞

∫ d ′ θ 
0

2π
∫ 1

.....
  .               (6.15)

It is clear that if we derive 

€ 

Br = −∂Aθ ∂z  from eqn. (6.14) we will simply recover

the result obtained by direct integration, eqn. (6.13). We may also derive θrArr
Bz ∂

∂
=
1

using eqn. (6.14). This procedure is clearly correct, but it is not obvious from inspection
that the result is actually equivalent to the direct integration, eqn. (6.12). We therefore
have the alternative form:

€ 

Bz =
1
r
∂
∂r

rAθ =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r Jθ ′ r , ′ z ( )
0

∞

∫  

€ 

⋅ d ′ θ 
0

2π
∫ cos ′ θ ( ) 1

r .....
−

r − ′ r cos ′ θ ( )
.....

3

 

 
 

 

 
 .  (6.16)

It may be verified from numerical examples that the two formulas for zB  are the same.
Mathematically, their equivalence can be reduced to the identity



€ 

dθ
0

2π
∫ 1− acos θ( ) = 1− a2( ) d

0

2π
∫ θ

1
1− acos θ( )

3  ,   (6.17)

which is also not obvious. However it can be shown that the two sides of eqn. (6.17) have
the same expansion coefficients multiplying all powers of 2a . This identity will be used
in section 7 and below in eqn. (6.25d).

Not surprisingly, there is also a second integral expression for θA , which can be

derived from eqns. (6.5) and (6.9):

r

A
rrBA z ∂

∂
−= θ

θ   (6.18)

 

€ 

=
µ0
4π

d3 ′ r 
′ J θ ′ r rsin2 ′ θ −θ( )

′ r − r
3∫   (6.19)

            

( ) ( )
3

22

0

2

0

0

.....

sin
,

4
θ

θ
π
µ π

θ

′
′′′′′′= ∫∫∫

∞∞+

∞−
dzrrJrrdzd  .   (6.20)

Similar to eqn. (6.17), the equivalence of this expression and eqn. (6.14) implies a non-
trival identity:

€ 

dθ
0

2π
∫

sin2 θ( )
1− acos θ( )

3 =
2
a

dθ
0

2π
∫

cos θ( )
1− acos θ( )

 .   (6.21)

Numerical integration of the Green function solutions is greatly simplified when
the integrals over θ ′  are worked in advance, leaving only integrations over 

€ 

′ r  and 

€ 

′ z .
This can be done exactly using the complete elliptic integrals E and K, or in an accurate
approximation using analytical fits – see section 7. First we isolate the essential θ ′
integrations; denote

€ 

a r,z, ′ r , ′ z ( ) ≡ 2r ′ r 
′ z − z( )2 + r2 + ′ r 2

 ,   (6.22)

which has range 

€ 

0 ≤ a ≤1, and define five functions:

€ 

f0 a( ) =
dθ
2π0

2π
∫ 1− acos θ( )  , (6.23a)

€ 

f1 a( ) =
dθ
2π0

2π
∫

cos θ( )
1− acos θ( )

 , (6.23b)



€ 

f2 a( ) =
dθ
2π0

2π
∫ 1

1− acos θ( )
 , (6.23c)

€ 

f3 a( ) =
dθ
2π0

2π
∫

cos θ( )
1− acos θ( )

3  , (6.23d)

€ 

f4 a( ) =
dθ
2π0

2π
∫ 1

1− acos θ( )
3  . (6.23e)

We express 0f  and 2f  in terms of E and K; the standard definitions

 [6-1] are

€ 

E x( ) = dy
0

π 2
∫ 1− x sin2 y( ) , (6.24a)

€ 

K x( ) = dy
0

π 2
∫ 1

1− x sin2 y( )
 . (6.24b)

[Warning: these definitions of 

€ 

Ε x( )  and 

€ 

K x( ) are used in Mathematica® [6-2], but in

some texts 

€ 

x 2 appears in the integrands instead of 

€ 

x .]  Using these expressions and a
change of variable, we have

€ 

f0 a( ) =
2 1+ a
π

E 2a
1+ a
 

 
 

 

 
  , (6.25a)

€ 

f2 a( ) =
2

π 1+ a
K 2a
1+ a
 

 
 

 

 
  , (6.25b)

and the remaining ( )afi  are found from 

€ 

f0  and 

€ 

f2  using the relations

€ 

f1 a( ) =
1
a
f2 a( ) − f0 a( )( )  , (6.25c)

( ) ( )
2

0
4 1 a

af
af

−
=  , (6.25d)

( ) ( ) ( )







−

−
= af

a

af

a
af 22

0
3 1

1
 . (6.25e)

The four Green function solutions, eqns. (6.12-6.15), are reduced to

( ) ( ) ( )





′

−
′

′′′′′= ∫∫
∞∞+

∞−
af

r
r

af
rr
a

zrJrrdzdBz 34

3

0

20

2
,

2 θ

µ
 ,   (6.26)



€ 

Br =
−µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫
∂Jθ ′ r , ′ z ( )

∂ ′ z 
a
2r ′ r 

f1 a( )  ,   (6.27)

€ 

Aθ =
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r Jθ ′ r , ′ z ( )
0

∞

∫ a
2r ′ r 

f1 a( )  ,   (6.28)

€ 

ϕ =
µ0
2

€ 

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
∂S ′ r , ′ z ( )
∂ ′ z 0

∞

∫ a
2r ′ r 

f2 a( ) .   (6.29)

References

6-1 Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, Dover,
New York (1965).

6-2 Wolfram, S., The Mathematica® Book, 3rd edition, Cambridge University Press
      (1991).

7. Approximation of the Green Function Integrals

The complete elliptic integrals 

€ 

E and 

€ 

K , defined in section 6, may be used to
accurately evaluate the functions ( )afi  that appear in the general Green function

solutions for 

€ 

Bz,Br,Aθ  and 

€ 

ϕ . However, the resulting formulas are complicated and not

very revealing. One might just as well evaluate the ( )afi  numerically from their defining

integrals (see plots of ( )afi  below). Except for 

€ 

f0 , which is defined to help evaluate the

other integrals, all of the 

€ 

fi  diverge as 1→a , so their Taylor series expansions are of
limited value. However, since

( ) 222

2

rrzz

rr
a

+′+−′

′
≡      (7.1)

is small when 

€ 

r  is either large or small, these expansions may be used to evaluate both
the near-axis field and far field. Expanding 

€ 

1− acos θ( )  in the integrands and

calculating the resulting elementary integrals yields:

€ 

f0 a( ) =
dθ
2π0

2π
∫ 1− acos θ( ) = 1− 1

16
a2 − 15

1024
a4 − 105

16384
a6 ⋅ ⋅ ⋅

 

 
 

 

 
  ,   (7.2a)

€ 

f1 a( ) =
dθ
2π0

2π
∫

cos θ( )
1− acos θ( )

=
a
4
1+
15
32
a2 +

315
1024

a4 ⋅ ⋅ ⋅
 

 
 

 

 
  ,   (7.2b)



€ 

f2 a( ) =
dθ
2π0

2π
∫ 1

1− acos θ( )
= 1+

3
16
a2 +

105
1024

a4 +
1155
16384

a6 + ⋅ ⋅ ⋅
 

 
 

 

 
  ,   (7.2c)

€ 

f3 a( ) =
dθ
2π0

2π
∫

cos θ( )
1− acos θ( )

3 =
3a
4
1+

35
32
a2 +

1155
1024

a4 + ⋅ ⋅ ⋅
 

 
 

 

 
  ,   (7.2d)

€ 

f4 a( ) =
dθ
2π0

2π
∫ 1

1− acos θ( )
3 = 1+

15
16
a2 +

945
1024

a4 +
15015
16384

a6 ⋅ ⋅ ⋅
 

 
 

 

 
  .   (7.2e)

These expansions suggest that 1f  and 2f diverge as Log 

€ 

1− a2( ), while 3f  and 4f

diverge as 

€ 

1 1− a2( ). This behavior is quantified below and accurate approximate

formulas are found that are valid through the entire range 

€ 

0 ≤ a ≤1.

8. Thin Wire Layer – Complete Solution

8.1 Semi-infinite layer

In section 4 we derived the on-axis field for a thin semi-infinite wire layer, which
was then used to build up more complex layouts by shifting, i.e. 

€ 

z→ z − z0, and adding
layers:

€ 

Jθ r,z( ) = Sδ r − R( )H −z( ) ,     (8.1)

€ 

B0 z( ) =
µ0S
2
1− z

z2 + R2
 

 
 

 

 
  .     (8.2)

Near-axis field components, including the lowest order fringe field aberration, are
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4
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zrR

Rz

zS

rB
BBz

µ
  (8.3a)

€ 

Br = −
B0′r
2

+
B0′′′r

3

16
− ...

=
µ0S
4

R2r

z2 + R2
3 +

3
8

R2 R2 − 4z2( )r3

z2 + R2
7 + ...

 

 
 
 

 

 
 
 
.
   (8.3b)



The near-axis results may be extended to any value of r  using the Green function
solutions. The resulting expressions involve only an integration over θ  because the
integrations over r′  and 

€ 

′ z  are elementary. We have from eqns. (6.12) and (6.13):

€ 

Bz =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r 
0

∞

∫ ′ r Sδ ′ r − R( )H − ′ z ( )[ ] dθ
0

2π
∫

′ r − r cos θ( )

′ z − z( )2 + ′ r 2 + r2 − 2 ′ r rcos θ( )
3

=
µ0S
2

dθ
2π0

2π
∫ d ′ z 

−∞

0
∫

R2 − Rr cos θ( )

′ z − z( )2 + R2 + r2 − 2Rrcos θ( )
3

€ 

=
µ0S
2

dθ
2π0

2π
∫ R2 − Rr cosθ

R2 + r2 − 2Rrcosθ
 

 
 

 

 
 1−

z
z2 + R2 + r2 − 2Rrcos θ( )

 

 

 
 

 

 

 
 
,       (8.4a)

€ 

Br =
−µ0
4π

d ′ z 
−∞

∞

∫ d ′ r ′ r ∂
∂ ′ z 

Sδ ′ r − R( )H − ′ z ( )
 

  
 

  0

∞

∫ dθ
cos θ( )

′ z − z( )2 + ′ r 2 + r2 − 2 ′ r rcos θ( )0

2π
∫

 

€ 

=
µ0S
2

dθ
2π0

2π
∫

R cos θ( )
z2 + R2 + r2 − 2Rrcos θ( )

.     (8.4b)

The first integral in eqn. (8.4a) for 

€ 

Bz  is simply

€ 

dθ
2π0

2π
∫

R2 − Rr cos θ( )
R2 + r2 − 2Rrcos θ( )

= H R − r( ) ,     (8.5)

so we find the expected limits

€ 

Bz →
µ0SH R − r( )
0

 
 
 

€ 

z→−∞

z→ +∞ ,     (8.6)

while at 

€ 

z = 0 there is the simple result

€ 

Bz =
µ0S
2
H R − r( )  .       (8.7)

Equation (8.2) for 

€ 

B0 z( )  is recovered from eqn. (8.4a) by setting 

€ 

r = 0. For general 

€ 

r,z( )

€ 

Bz  does not appear to be expressible in terms of commonly used functions, but if we
insert 

€ 

r = R, then we obtain simply



€ 

Bz R,z( ) =
µ0S
4
1−

zf2 2R
2 z2 + 2R2( )( )
z2 + 2R2

 

 

 
 

 

 

 
 
 .     (8.8)

For 

€ 

z < 0 this is the longitudinal field along the center of the thin wire layer. The
longitudinal field immediately inside or outside the layer (denoted 

€ 

r = R ±) is therefore

  

€ 

Bz R±,z < 0( ) =
µ0S
4
1−

zf2 2R
2 z2 + R2( )( )
z2 + 2R2

 

 

 
 

 

 

 
 
 µ0S
2

  ,                 (8.9)

with 

€ 

f2  defined in section (7):

                       

€ 

f2 a( ) =
dθ
2π0

2π
∫ 1

1− acos θ( )
 .

8.2 Wire end divergence

From equations (8.8) and (8.9) follows that very close to the wire layer ends

€ 

r = R±,z = 0 ±( ), 

€ 

Bz  is discontinuous as:

This seemingly peculiar behavior is easily seen by a numerical evaluation of expression
(8.4a) near the wire layer end. It can also be deduced from the behavior of 

€ 

Br  (see below)
using the Maxwell equation 

€ 

∇ ⋅ B = 0.

Expression (8.4b) for 

€ 

Br  can be written in the compact form

€ 

Br =
µ0S
2

R
z2 + r2 + R2

f1 b( )  , (8.10)

with 

€ 

b ≡ 2Rr z2 + r2 + R2( ) , and 

€ 

f1 b( )  defined in section 7 as:

         

€ 

r           

€ 

z        

€ 

Bz µ0 S
        

€ 

R −          

€ 

0 −         

€ 

3
4

       

€ 

R −          

€ 

0 +         

€ 

1
4

       

€ 

R +          

€ 

0 −      

€ 

− 14
       

€ 

R +          

€ 

0 +         

€ 

1
4



€ 

f1 b( ) =
dθ
2π0

2π
∫

cos θ( )
1− bcos θ( )

. (8.11)

Recall that as 

€ 

b→1,

€ 

f1 b( )→ C
4b

D−Log 1− b2( )[ ] ,  (8.12)

where 

€ 

C = 2 2 /π  and 

€ 

D = 6Log 2( ) − 4( ). It is apparent that 

€ 

Br  is weakly divergent at

the wire layer end 

€ 

r = R,z = 0( ). Explicitly, using eqns. (8.10, 8.12),

€ 

Br →
µ0S
4π

D−Log z
2 + r − R( )2

R2
 

 
 
 

 

 
 
 

 
 
 

  

 
 
 
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 .  (8.13)

Although 

€ 

Br  becomes infinite for an infinitesimally thin current layer, it is finite for a
layer of finite thickness. In fact in a thin layer 

€ 

Br  exceeds the scale field strength 

€ 

µ0S( )
only when 

€ 

z2 + r − R( )2 ≤ R 400. For thickness greater than 

€ 

R 20  the divergent
behavior of the thin layer is not representative. Interestingly, the logarithmic divergence
does have an effect in permanent magnets, which have essentially infinitesimal surface
current layer thickness, which causes a partial demagnetization at magnet corners due to
the non-ideal magnetization properties of the material.

For 

€ 

r >> R , eqns. (8.4a,b) may be expanded in inverse powers of 

€ 

r  to yield in
leading order

€ 

B ≈ µ0SH R − r( )H −z( )ˆ e z +
µ0SR2 r

4 r
3  .               (8.14)

This is just a uniform direct field that terminates at 

€ 

z = 0 plus a residual “magnetic
monopole field” with net flux 

€ 

πR2µ0S  centered at 

€ 

r = 0. A generalization of this result is
presented in section 11.

8.3 Finite length lense

For a solenoid of finite length   and wire radius 

€ 

R, centered at 

€ 

z = 0, equations
(8.4a,b) give by translation and superposition



                 

  

€ 

Bz =
µ0S
2

dθ
2π0

2π
∫

R2 − Rr cos θ( )
R2 + r2 − 2Rr cos θ( )

 

 
 

 

 
 

•
z +  2( )

z +  2( )2 + r2 + R2 − 2Rr cos θ( )
−

z −  2( )
z −  2( )2 + r2 + R2 − 2Rrcos θ( )

 

 

 
 

 
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 
 
,

(8.15a)

                  

  

€ 

Br =
µ0S
2

dθ
2π0

2π
∫

•
R cos θ( )

z −  2( )2 + r2 + R2 − 2Rr cos θ( )
−

R cos θ( )
z +  2( )2 + r2 + R2 − 2Rrcos θ( )
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 

 
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 
 
.

                        (8.15b)

Plots of 

€ 

Bz  and 

€ 

Br  for several values of 

€ 

r  are displayed below for a lense of length   

€ 

 = 4.0m and wire
radius 

€ 

R =1.0m.



The vector potential of a finite length solenoid can also be expressed by a single
integral over 

€ 

θ  using the Green function (6.14):



  

€ 

Aθ =
µ0
4π

d3 ′ r 
Jθ ′cos ′ θ −θ( )

′ r − r
∫

=
µ0SR
4π

dθ
0

2π
∫ cos θ( ) d ′ z 

− 2

 2
∫ 1

′ z − z( )2 + r2 + R2 − 2Rrcos θ( )

  

€ 

=
µ0SR
2

dθ
2π0

2π
∫ cos θ( )Log

z −  2( )2 + R2 + r2 − 2Rr cos θ( ) − z −  2( )
z +  2( )2 + R2 + r2 − 2Rr cos θ( ) − z +  2( )

 

 

 
 

 

 

 
 
. (8.16)

Equation (6.20) gives the alternative, equivalent form

  

€ 

Aθ =
µ0SR

2r
2

dθ
2π0

2π
∫

sin2 θ( )
R2 + r2 − 2Rrcos θ( )

⋅
z +  2( )

z +  2( )2 + R2 + r2 − 2Rrcos θ( )
−

z −  2( )
z −  2( )2 + R2 + r2 − 2Rrcos θ( )

 

 

 
 

 

 

 
 
.
 

   (8.17)

8.4 Stored energy

The magnetic field
energy of a thin-layer lens is easily evaluated. In the absence of
permeable materials we have in general,

€ 

W = d3∫ r
B
2

2µ0
= d3r B •∇xA

2µ0
∫ = d3∫ r A •∇xB

2µ0
= d3∫ r A • J

2
  .   (8.18)

For 

€ 

Jθ = S z( )δ r − R( ), eqn. (8.18) gives

( ) ( )zRAzSdzRW ,θπ ∫= .

  (8.19)

Inserting expression (8.17) for 

€ 

Aθ  and working the elementary integrations in 

€ 

z  gives for
a lens of length   

€ 

 :



                  
  

€ 

W =
πR2 µ0S( )2

2µ0
f x( )  ,               (8.20)

where   

€ 

x = 2 2R2  and

                 

€ 

f x( ) =
1
x

dθ
2π0

2π
∫ 1+ cos θ( )( ) x +1− cos θ( ) − 1− cos θ( )[ ] .  (8.21)

This function can be expressed using the previously defined 

€ 

f0  and 

€ 

f3  (section 7):

               

€ 

f x( ) =
x +1
x

f0
1

1+ x
 

 
 

 

 
 −
1
3
1− 1

1+ x( )2
 

 
  

 

 
  f3

1
1+ x
 

 
 

 

 
 

 

 
 
 

 

 
 
 
−
2
3
C
x

 , (8.22)

which slowly approaches unity for large 

€ 

x :

             

€ 

f x( )→1− 2
3
C
x

+
1
4x

 . (8.23)

For very large 

€ 

x >>1, i.e.   

€ 

 >> 2R, f x( )→1 and expression (8.20) is just the
energy one gets using only the direct field of the magnet bore. For 

€ 

x > .2 , which covers
all cases of practical interest,

            

€ 

f x( ) ≈ 1

1+
.63
x

 ,                                                                                                 (8.24)

with error less that 1%, so we have in general for the thin layer lens

            
  

€ 

W ≈
πR2 µ0S( )2

2µ0

1
1+ .89R 

 .

 (8.25)

It is somewhat surprising that the actual value of 

€ 

W for the finite-length lens is smaller
than the approximate value found using only the direct field.

             Suppose the current layer is made of 

€ 

n  turns of wire carrying current I . Then
InS =  and the magnet’s inductance is



            



R

RnW
L

89.1I

2 22
0

2 +
≈=

πµ
 .

 (8.26)



9. Thick Wire Layer

9.1 Uniform thick layer



While the thin wire layer formulas are sufficient for most beam dynamics
applications, thick layer results are needed for precise near-axis fields, external fields,
field in the wire, and mechanical stress. We first treat the case of radially uniform current
density

€ 

Jθ =
S z( )
R2 − R1

R1 < r < R2( )  .     (9.1)

As in section 4, it is usually sufficient to derive the field for a semi-infinite thick layer,

€ 

S z( ) = SH −z( ) ,  and any system of lenses may be built up from this by offsets

€ 

z→ z − z0( ) and super-position.

Recall from section 8 the semi-infinite thin layer field 

€ 

Jθ = SH −z( )δ r − R( )[ ] :

€ 

Bz
thin =

µ0S
2

dθ
2π0

2π
∫

R2 − Rrcos θ( )
R2 + r2 − 2Rrcos θ( )

1− z
z2 + R2 + r2 − 2Rrcos θ( )

 

 

 
 

 

 

 
 
 ,   (9.2a)

€ 

Br
thin =

µ0S
2

dθ
2π0

2π
∫

Rcos θ( )
z2 + R2 + r2 − 2Rrcos θ( )

.     (9.2b)

For the thick, uniform, semi-infinite layer we simply compute a radial superposition of
these thin layer fields:

€ 

Bz,Br( )thick =
dR

R2 − R1R1

R2∫ Bz,Br( )thin  .     (9.3)

The on-axis field of the semi-infinite thick layer is

€ 

B0
thick z( ) =

dR
R2 − R1R1

R2∫ µ0S
2
1− z

z2 + R2
 

 
 

 

 
 

=
µ0S
2
1− z

R2 − R1
Log R2 + z2 + R2

2

R1 + z2 + R1
2

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 
.
     (9.4)

As mentioned in section 4, for a thick-layer lens of length   

€ 

  centered at 

€ 

z = 0, the on-axis
field is



  

€ 

B0
Lens z( ) =

µ0S
2 R2 − R1( )


2

+ z
 

 
 

 

 
 

 
 
 

Log
R2 +


2

+ z
 

 
 

 

 
 
2

+ R2
2

R1 +

2

+ z
 

 
 

 

 
 
2

+ R1
2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

+

2
− z

 

 
 

 

 
 Log

R2 +

2
− z

 

 
 

 

 
 
2

+ R2
2

R1 +

2
− z

 

 
 

 

 
 
2

+ R1
2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
  

 
 
 

.

     (9.5)

Near-axis values of zB and rB  can then be obtained using these results and the radial expansions of
section 3. For the field at the magnet center 

€ 

z = 0( ), eqn. (9.5) reduces to

  

€ 

B0
Lens 0( ) =

µ0S
2 R2 − R1( )

Log R2 + 2 4 + R2
2

R1 + 2 4 + R1
2

 

 
 
 

 

 
 
  .         (9.6)

The semi-infinite, thick-layer formulas for zB and rB at general 

€ 

r,z( ) can also be
written in terms of integrations over θ . The integrals over R  in eqn. (9.3) can actually be
evaluated in terms of elementary functions, although the results are somewhat messy.
First we define

€ 

u r,θ( ) = R1 − r cos θ( ), v r,θ( ) = R2 − r cos θ( )  .            (9.7a,b)

Then, using the integrals given at the end of section 3 and omitting some intermediate
steps, we get from eqns. (9.2, 9.3):

€ 

Br
thick =

µ0S
2 R2 − R1( )

dθ
2π0

2π
∫ cos θ( ) v 2 + z2 + r2 sin2 θ( )

 

 
 

 
 

€ 

− u2 + z2 + r2 sin2 θ( ) + rcos θ( )Log
v + v 2 + z2 + r2 sin2 θ( )
u + u2 + z2 + r2 sin2 θ( )

 

 

 
 

 

 

 
 

 
 
 

  
 ,                   (9.8)



€ 

Bz
thick =

µ0S r( )
2

−
µ0Sz

2 R2 − R1( )
dθ
2π0

2π
∫ Log

v + v 2 + z2 + r2 sin2 θ( )
u + u2 + z2 + r2 + sin2 θ( )

 

 

 
 

 

 

 
 

 
 
 

  

€ 

−
r sin θ( )

z
 

 
 

 

 
 tan−1

z
rsin θ( )

v
v 2 + z2 + r2 sin2 θ( )

 

 

 
 

 

 

 
 − tan

−1 z
rsin θ( )

u
u2 + z2 + r2 sin2 θ( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
 
 

  
.

    (9.9)

Here we have used

€ 

S r( ) =

S
S
0

 

 
 

 
 

R2 − r
R2 − R1

0 < r < R1
R1 < r < R2
R2 < r .

              (9.10)

9.2 Approximation by a thin layer

It was asserted in section 4 that the on-axis field of a thin layer magnet, with small
error could replace the on-axis field of a uniform thick layer magnet. There are many
ways to select the three parameters (S, R,   

€ 

 ) of the thin layer. Here we use the same S
and   

€ 

  as the thick layer and set R to give the correct net magnetic dipole moment by
requiring

( )2112
2
2

2

12
0

22

3
SR

2

1

RRRR
S

r
RR

S
drrdrJ

R

R
++=

−
== ∫∫

∞

θ  .       (9.11)

Defining a thickness parameter

€ 

Δ ≡ R2 − R1( ) R  ,   (9.12)

we have from eqn. (9.11)













 Δ
−

Δ
−=

212
1

2

1 RR , 

€ 

R2 = R 1− Δ
2

12
+
Δ
2

 

 
  

 

 
   .                                (9.13a,b)

€ 

−
r cos θ( )

z
 

 
 

 

 
 tanh−1

v 2 + z2 + r2 sin2 θ( )
z

 

 

 
 

 

 

 
 − tanh

−1 u2 + z2 + r2 sin2 θ( )
z

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 



We require that 

€ 

Δ < 3  to prevent 01 <R . A somewhat different formula for 

€ 

R is

obtained if we equate the focal lengths of the magnets 

€ 

f −1 ~ dzB0
2∫ z( )( ) . The following

table gives the maximum ratio of on-axis fields for the thin layer eqn. (4.6), relative to the
equivalent thick layer eqn. (9.5), for various values of 

€ 

Δ  and   

€ 

 R . Except for very small

  

€ 

 R  this maximum occurs in the fringe at   

€ 

z ≈ ±  2 + .8R( ).

  

€ 

 R

€ 

B0
thin B0

thick

Δ = .1

€ 

Δ = .2

€ 

Δ = .5

€ 

Δ =1.0
1 1.00094 1.0038 1.024 1.101
2 1.00088 1.0035 1.023 1.094
4 1.00082 1.0033 1.021 1.087
8 1.00079 1.0032 1.020 1.084
16 1.00078 1.0031 1.020 1.083

            9.3 General thick layer

           Finally we treat the thick wire layer with specified ends and general current
density profile 

€ 

Jθ r( ) = −dS r( ) dr  between the ends. The Green function solutions of
section 6 can be used for this, as can simple averages of eqns. (9.2). However, more
useful expressions can be derived using the Bessel transform. First, the semi-infinite layer

€ 

Jθ = Jθ r( )H −z( ) has 

€ 

Bz r,z→−∞( ) = µ0S r( ) , and by symmetry

€ 

Bz r,z = 0( ) =
µ0S r( )
2

 .   (9.14)

For 

€ 

z > 0,

€ 

Bz ~ J0 kr( )e−kz  ,   (9.15)

with 

€ 

k > 0 is a valid solution of 

€ 

∇2Bz = 0 , except for the boundary condition (9.14). The
correct solution for 

€ 

z ≥ 0 is given by the Bessel transform:

€ 

Bz r,z ≥ 0( ) =
µ0

2
dk kJ0 kr( )e−kz ˜ S 

0

∞

∫ k( ) ,   (9.16)

            

€ 

˜ S k( ) = dr
0

∞

∫ rJ0 kr( )S r( )  .   (9.17)

We denote the nth ordinary Bessel function by 

€ 

Jn x( ) . A similar calculation gives

€ 

Bz r,z ≤ 0( ) = µ0S r( ) − µ0

2
dk

0

∞

∫ kJ0 kr( )e+kz ˜ S k( )  .   (9.18)

Combining these results we have for the entire semi-infinite layer:



( ) ( ) ( ) ( )kSekrkJdk
z
z

zHrSB zk
z

~
2 00

0
0

−∞

∫+−=
µ

µ  .   (9.19)

           

€ 

B can also be derived from the modified scalar potential (see section 5):

                        

€ 

Bz r,z( ) = µ0S r( )H −z( ) + ∂ϕ ∂z  .   (9.20)

Equation (9.19) then gives for 

€ 

ϕ  and 

€ 

Br :

€ 

ϕ r,z( ) = −
µ0

2
dk

0

∞

∫ J0 kr( )e−k z ˜ S k( )  ,   (9.21)

€ 

Br r,z( ) =
∂ϕ
∂r

=
µ0

2
dk

0

∞

∫ kJ1 kr( )e−k z ˜ S k( )  .   (9.22)

               Using superposition, a lens of length   

€ 

 , centered at 

€ 

z = 0 is seen to have fields

  

€ 

Bz r,z( ) = µ0S r( ) H −z +  2( ) −H −z −  2( )[ ]

+
µ0
2

dk
0

∞

∫ kJ0 kr( )S
~
k( )

z −  2( )
z −  2

e−k z− 2 −
z +  2( )
z +  2

e−k z+ 2
 

 
 

 

 
 ,

           (9.23)

  

€ 

Br r,z( ) =
µ0
2

dk
0

∞

∫ kJ1 kr( )S
~
k( ) e−k z− 2 − e−k z+ 2[ ] .   (9.24)

               It remains to evaluate 

€ 

˜ S k( ) . First we integrate by parts in eqn. (9.17) using

€ 

Jθ = −dS r( ) dr :

€ 

˜ S k( ) = drS r( )
0

∞

∫ ∂
∂r

rJ1 kr( )
k

= drJθ r( )
rJ1 kr( )

k0

∞

∫  .   (9.25)

Case 1 (thin layer):

€ 

Jθ r( ) = Sδ r − R( ) ,   (9.26)

€ 

˜ S =
RSJ1 kR( )

k
.   (9.27)

Case 2 (

€ 

Jθ  decreasing with 

€ 

r ):

€ 

Jθ r( ) =
S

r Log R2 R1( )
R1 < r < R2  ,   (9.28)



€ 

˜ S k( ) =
S

k 2 Log R2 R1( )
J0 kR1( ) − J0 kR2( )[ ]  .   (9.29)

Case 3 (uniform thick layer):

€ 

Jθ =
S

R2 − R1
R1 < r < R2  ,   (9.30)

€ 

˜ S k( ) =
S

k 3 R2 − R1( )
dy

kR1

kR2

∫ yJ1 y( ) .   (9.31)

The integration over 

€ 

y , although not elementary, can be expressed as a hypergeometric
function:

€ 

dy
0

x
∫ yJ1 y( ) =

x 3

6 1F2
3
2
;2,5
2
;− x 2 4

 

 
 

 

 
   .               (9.32)

In Mathematica® notation

€ 

1F2 a;b,c;z( ) = Hypergeometic PFQ a{ }, b,c{ },z[ ]   (9.33)

€ 

=1+
a
bc

z
1!

+
a a +1( )

b b +1( )c c +1( )
z2

2!
+ ... .   (9.34)

Equation (9.31) becomes

          

€ 

˜ S k( ) =
S

6 R2 − R1( )
R2

3
1F2

3
2

;2,5
2

;− k 2R2
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4
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1F2
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 

 
  .     (9.35)

10. Periodic Thin Wire Layer

The field of an infinite, periodic wire layer is of interest for beam transport. Its
external field is very different from that of an isolated magnet, particularly at large r ,
where it falls off exponentially rather than as 3−r . The return flux is diluted to zero
intensity in this case.



Let  denote an individual solenoid’s wire layer length and g  denote gap lengths
between adjacent wire layers. Assuming the solenoids all have the same polarity, the
lattice period length is gP +=  . For one magnet of the lattice we set

  

€ 

Jθ = Sδ r − R( ) for −

2

< z <

2

  , (10.1)

and extend this layer periodically. Then the Fourier expansion of ( )zS  with period P  is

  

€ 

S z( ) =
S
P

+ Sn
n=1

∞

∑ cos 2πnz
P

 

 
 

 

 
  , (10.2)

with








=
P

n

n

S
Sn

π
π
sin

2
 . (10.3)

The longitudinal field can be similarly expanded:

  

€ 

Bz = µ0S

P
H R − r( ) + Bn r( )cos 2πnz

P
 

 
 

 
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 

n=1

∞

∑  , (10.4)

with
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Bn r( ) = µ 0S( )sin
πn
P
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€ 

Bn r( ) = − µ0S( )sin πn
P

 
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 

 
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4R
P
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 
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 
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 

 
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 R < r <∞ , (10.5b)

where 

€ 

In  and 

€ 

Kn  are modified Bessel functions of the first and second kind. The
functions 

€ 

Bn r( )  satisfy

( )Rrr
rr
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P

n

r

B
r
rr nn
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∂

∂
−=







−
∂

∂

∂

∂
δµ

π 121
0

2

  .   (10.6)

We have used the jump conditions for ( )rBn  at R , which may be derived from eqn.

(10.6):

( ) ( ) nnn SRBRB 0µ−=−−+  , (10.7a)



( ) ( ) 0=−
∂
∂

−+
∂
∂

R
r
B

R
r
B nn , (10.7b)

and the Wronskian identity,

€ 

I0 x( )K1 x( ) + I1 x( )K0 x( ) =
1
x

 .

In similar fashion we find

( ) 






=∑
∞

= P
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rCB

n
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π2
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1

  , (10.8)
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P

 

 
 

 

 
 
4R
P

 

 
 

 

 
 K1

2πnR
P

 

 
 

 

 
 I1

2πnr
P

 

 
 

 

 
 0 < r < R , (10.9a)
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P
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 
 

 

 
 K1

2πnr
P

 

 
 

 

 
 R < r <∞ . (10.9b)

This solves 

€ 

∇ ⋅ B = 0 with zB  given above. The components ( )rCn  are continuous at

Rr = .

At large r the asymptotic expansion of 

€ 

K0 2πn r P( )  yields

( )
r

P
rn

Bn
π2exp

~
−

 , (10.10)

showing the asserted exponential decrease of field strength outside the wire. However,
the calculated net flux in this example is PRS 20 πµ , so the return flux must be regarded

as being diluted to zero magnitude. Plots of 

€ 

Bzand 

€ 

Br  at various r  are presented below
for the parameters:

  

€ 

µ0S

P

=10.0T, R = .2m,  = .8m, g = .2m, P =  + g =1.0m.

A total of 200 terms are used in the Fourier expansion. Note that while 

€ 

Bz  reaches ~7.0T
in the gaps, it drops to less than 2.0T in the volume behind the wire where an induction
core could be located. This calculation is modified in section 18 with the addition of a
permeable yoke to reduce the external field.



                                      

€ 

Bz vs z at r = 0, .1, .195

€ 

Bz vs z at r = .25, .4, .55

      
             

€ 

Bz vs z at r = .1, .195

11. Far Field and External Field

Because a solenoid system may have a large dipole moment, its field can interfere
with nearby experiments and the operation of accelerator components. A short magnetic
bend, which resembles a solenoid turned on its side, also has a net dipole moment, but a



permeable yoke is usually used to confine its return flux. This technique is not as
effective for transport solenoids because the yoke must not block the vacuum bore. Also,
if annular yokes are used in an induction linac they may considerably increase the
diameter of adjacent induction cores and thereby increase the overall cost. It is possible to
greatly reduce the far field by alternating the polarity of solenoid lenses, but this reduces
their effectiveness for beam transport and actually increases the external field (just
outside the wire). We are therefore motivated to evaluate the far and external fields in the
absence of return flux confinement.

The far field and external field can be approximated using two different series
expansions of the global potential 

€ 

ϕ . Both expansions may have contributions from
several or many individual magnets, so it may be misleading to consider only one magnet
at a time. Recall from section 5,

€ 

B = µ0S r,z( )ˆ e z +∇ϕ ,   (11.1)

where S(r,z) is the cumulative surface current density:

( ) ( )zrJrdzrS
r

,, ′′= ∫
∞

θ  .   (11.2)

The Green function solution for 

€ 

ϕ  is, from section (6):

€ 

ϕ =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫ d ′ θ 
0

2π
∫ ∂ ′ S 

∂ ′ z 
1

′ z − z( )2 + ′ r 2 + r2 − 2 ′ r rcos ′ θ −θ( )
.   (11.3)

11.1 Far field expansion

Consider first the far field expansion in inverse powers of 

€ 

r = r2 + z2( )
1
2 , with r

and z both considered to be large of order 

€ 

r , which is larger than r ′ . We could

laboriously expand 

€ 

′ r − r
−1

 in inverse powers of r , work the elementary integrals over

€ 

′ θ , and gather terms of the same order. Fortunately this task has already been done for us

in texts that treat electrostatics using spherical harmonics. For rr ′> ,

€ 

dθ
2π0

2π
∫ 1

′ r − r
=

′ r 
n

r
n +1

n= 0

∞

∑ Pn cosψ( )Pn cos ′ ψ ( ) ,   (11.4)

where

€ 

cos ψ( ) ≡ z
r
, cos ′ ψ ( ) ≡

′ z 
′ r 
 ,   (11.5)



and the nP are the Legendre polynomials:

€ 

P0 x( ) =1,
P1 x( ) = x,

P2 x( ) = 3x 2 −1( ) 2,
P3 x( ) = 5x 3 − 3x( ) 2,
P4 x( ) = 35x 4 − 30x 2 + 3( ) 8, etc.

  (11.6)

Inserting expression (11.4) into eqn. (11.3) gives
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  (11.7)

The leading (monopole) term vanishes after integration by parts in 

€ 

′ z  unless 

€ 

′ S  does not
vanish as 

€ 

′ z →∞:
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       (11.8)

=

€ 

ϕdipole +ϕquadrupole +ϕsextupole + ... .   (11.9)

Equation (11-8) may be written in the compact form

€ 

ϕ = −
µ0
4π

m1P1 cosψ( )
r
2 +

m2P2 cosψ( )
r
3 +

m3P3 cosψ( )
r
4 + ...
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 ,             (11.10)

where the im are the multipole moments:

( )zrSdrrdzm ,2
01 ∫∫
∞+∞

∞−
= π  ,           (11.11a)

( )( )zzrSdrrdzm 2,2
02 ∫∫
∞+∞

∞−
= π  ,           (11.11b)



( ) ( )
2
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−
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∞∞+

∞−
π  ,           (11.11c)

etc. Here 1m  is the dipole moment with the conventional definition given in section 2.

The quadrupole ( 2m ) and sextupole ( 3m ) moments have been defined in a way that

makes eqn. (11-10) simple in appearance. Their general tensor forms are unnecessary
with solenoidal symmetry.

For the far field expansion to be useful we must specify a coordinate origin,
which should be at the magnet system center in some weighted sense. For a single lens
the origin would usually be at the lens center. More generally the quadrupole moment can
usually be zeroed by the right choice of origin. However, if 1m  vanishes, then 2m is

independent of the coordinate origin. In this case 3m  may be made to vanish.

Using 

€ 

B
residual

=∇ϕ , the dipole components of the far field are
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11.2 External field expansion

To obtain an expansion for the external field we take rr <′ , but make no
assumption about z and z′ . Then ( ) 22 rzzrr +−′<′ and we write equation (11.3) as
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ϕ =
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+∞
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0
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(11.13)
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where  

€ 

...[ ] denotes the bracketed expression in eqn. (11.13). After the integrals over 
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′ θ 
are worked and terms of like order in 
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′ r  are grouped we have
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(11.15)

The radial moments defined in section 2 may now be used:
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S z( )r2 z( ) = 2 d ′ r ′ r S ′ r ,z( )∫  ,           (11.16a)
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S z( )r4 z( ) = 4 d ′ r ′ r 3S ′ r ,z( )∫  ,           (11.16b)
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S z( )r6 z( ) = 6 d ′ r ′ r 5S ′ r ,z( )∫  ;               (11.16c)
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 (11.17)

This series appears to be complicated, but in fact we have again generated Legendre
polynomials. Let

€ 

cos γ( ) ≡
′ z − z( )

′ z − z( )2 + r2
 . (11.18)

Then eqn. (11.17) may be written
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(11.19)

We treat the semi-infinite distribution

€ 

S r,z( ) = S r( )H −z( ) ,   (11.20)



with   

€ 

S r = 0( ) ≡ S and  r ≡ r2 + z2 ; from eqn. (11.17):
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These are monopole, quadrupole, octopole, etc. terms. For a thin annular layer at radius
R,

€ 

r2 = R2, r4 = R4 , r6 = R6,... . (11.22)
           

For a uniform thick layer (

€ 

R1 ≤ r ≤ R2),
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R2
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3
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R2
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5

5 R2 − R1( )
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7
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,... . (11.23)

The leading (monopole) term of eqn. (11.21) gives
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ϕ ⋅=≈∇=  , (11.24)

as expected.

11. Far Field and External Field

Because a solenoid system may have a large dipole moment, its field can interfere
with nearby experiments and the operation of accelerator components. A short magnetic
bend, which resembles a solenoid turned on its side, also has a net dipole moment, but a
permeable yoke is usually used to confine its return flux. This technique is not as
effective for transport solenoids because the yoke must not block the vacuum bore. Also,
if annular yokes are used in an induction linac they may considerably increase the
diameter of adjacent induction cores and thereby increase the overall cost. It is possible to
greatly reduce the far field by alternating the polarity of solenoid lenses, but this reduces
their effectiveness for beam transport and actually increases the external field (just
outside the wire). We are therefore motivated to evaluate the far and external fields in the
absence of return flux confinement.

The far field and external field can be approximated using two different series
expansions of the global potential 

€ 

ϕ . Both expansions may have contributions from



several or many individual magnets, so it may be misleading to consider only one magnet
at a time. Recall from section 5,

€ 

B = µ0S r,z( )ˆ e z +∇ϕ ,   (11.1)

where S(r,z) is the cumulative surface current density:

( ) ( )zrJrdzrS
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,, ′′= ∫
∞

θ  .   (11.2)

The Green function solution for 
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ϕ  is, from section (6):
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11.1 Far field expansion

Consider first the far field expansion in inverse powers of 

€ 

r = r2 + z2( )
1
2 , with r

and z both considered to be large of order 
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r , which is larger than r ′ . We could

laboriously expand 
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′ r − r
−1

 in inverse powers of r , work the elementary integrals over
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′ θ , and gather terms of the same order. Fortunately this task has already been done for us

in texts that treat electrostatics using spherical harmonics. For rr ′> ,
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where
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and the nP are the Legendre polynomials:
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P0 x( ) =1,
P1 x( ) = x,

P2 x( ) = 3x 2 −1( ) 2,
P3 x( ) = 5x 3 − 3x( ) 2,
P4 x( ) = 35x 4 − 30x 2 + 3( ) 8, etc.

  (11.6)



Inserting expression (11.4) into eqn. (11.3) gives
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The leading (monopole) term vanishes after integration by parts in 
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′ z  unless 
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′ S  does not
vanish as 
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′ z →∞:
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=
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ϕdipole +ϕquadrupole +ϕsextupole + ... .   (11.9)

Equation (11-8) may be written in the compact form
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where the im are the multipole moments:
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etc. Here 1m  is the dipole moment with the conventional definition given in section 2.

The quadrupole ( 2m ) and sextupole ( 3m ) moments have been defined in a way that

makes eqn. (11-10) simple in appearance. Their general tensor forms are unnecessary
with solenoidal symmetry.

For the far field expansion to be useful we must specify a coordinate origin,
which should be at the magnet system center in some weighted sense. For a single lens



the origin would usually be at the lens center. More generally the quadrupole moment can
usually be zeroed by the right choice of origin. However, if 1m  vanishes, then 2m is

independent of the coordinate origin. In this case 3m  may be made to vanish.

Using 
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B
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=∇ϕ , the dipole components of the far field are
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11.2 External field expansion

To obtain an expansion for the external field we take rr <′ , but make no
assumption about z and z′ . Then ( ) 22 rzzrr +−′<′ and we write equation (11.3) as
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where  
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...[ ] denotes the bracketed expression in eqn. (11.13). After the integrals over 
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(11.15)

The radial moments defined in section 2 may now be used:
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S z( )r2 z( ) = 2 d ′ r ′ r S ′ r ,z( )∫  ,           (11.16a)
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S z( )r4 z( ) = 4 d ′ r ′ r 3S ′ r ,z( )∫  ,           (11.16b)

€ 

S z( )r6 z( ) = 6 d ′ r ′ r 5S ′ r ,z( )∫  ;               (11.16c)
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 (11.17)

This series appears to be complicated, but in fact we have again generated Legendre
polynomials. Let

€ 

cos γ( ) ≡
′ z − z( )

′ z − z( )2 + r2
 . (11.18)

Then eqn. (11.17) may be written
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We treat the semi-infinite distribution

€ 

S r,z( ) = S r( )H −z( ) ,   (11.20)

with   

€ 

S r = 0( ) ≡ S and  r ≡ r2 + z2 ; from eqn. (11.17):
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These are monopole, quadrupole, octopole, etc. terms. For a thin annular layer at radius
R,



€ 

r2 = R2, r4 = R4 , r6 = R6,... . (11.22)
           

For a uniform thick layer (

€ 

R1 ≤ r ≤ R2),

€ 

r2 =
R2
3 − R1

3

3 R2 − R1( )
, r4 =

R2
5 − R1

5

5 R2 − R1( )
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R2
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7

7 R2 − R1( )
,... . (11.23)

The leading (monopole) term of eqn. (11.21) gives

( )
33

2
0

4
fluxdirect

4 r

r

r

rrS
B
ex

π

µ
ϕ ⋅=≈∇=  , (11.24)

as expected.

12. Field in the Wire Layer

We now have several ways to calculate the field within the wire layer. Near the
layer ends an accurate calculation requires the general formalism of section 6 or the thick
layer solution (equation (9.3)), plus the contribution from nearby magnets. Away from
the wire ends the external field expansion of section 11 plus the direct field 

€ 

µ0S r,z( )ˆ e z  is
applicable.

The peak field in the wire layer is of great interest since it limits the averaged
critical current density (sections 2 and 20). Usually this peak field occurs at the inner
edge of the wire layer at the middle of a magnet. The logarithmic singularity of 

€ 

Br  at the
ends of a thin layer is not representative of realistic cases. The peak field can be
accurately estimated using the first two terms of the near-axis expansion if the magnet is
not too short   

€ 

R  ≤ .5( ) :

€ 

Bz ≈ B0 z( ) − B0′′ z( ) r
2

4
 , (12.1a)

€ 

Br ≈ −B0′ z( ) r2
+ B0′′′ z( ) r

3

16
 . (12.1b)

We use the thick layer formula for a single magnet, eqn. (9.5), to obtain 

€ 

B0  and 

€ 

B0′′ at the
magnet center (z=0), and by symmetry 

€ 

Br  vanishes there. At the inner wire radius 
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R1 this
gives for a magnet of length   
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 :
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This formula may be written in dimensionless form using the definitions

  

€ 

R =
R1 + R2
2

, Δ =
R2 − R1
R

, α = 2R   ;   (12.3)

            (12.4)

.

The degree of accuracy of eqn. (12.4) is indicated in the following table, where the ratio

€ 

Bmax Bmax
approx  is given for several values of 

€ 

Δ  and 

€ 

α .

€ 

Δ \α 1.0 .5 .25
1 .998320 .999746 .999990
.5 .992932 .998618 .999948
.25 .987348 .997435 .999904
.10 .982344 .996471 .999868
.04 .979903 .996029 .999851

            The exact values of 
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Bmax µ0S  for several values of 
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α  and 
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Δ  are computed and
tabulated below from
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€ 

Δ \α 1.0 .5 .25
1.0 .742700 .897437 .968828
.5 .776529 .907269 .971029
.25 .798374 .912353 .971858
.10 .812152 .915356 .972267
.04 .817666 .916536 .972412

13. Current to Produce a Given Field

When designing a magnet system one usually asks for the current distribution to
produce a desired field. For solenoids it is clear that any on-axis field profile with

€ 

B ≤10T  can be made with scale length variations down to a few centimeters. But for
beam transport and focusing this may also require an unacceptable small inner radius for
the wire layer. Increasing the wire layer radius increases the scale length of field
variations.

In the present calculation we assume the current is concentrated in a thin layer of
fixed radius 

€ 

R; 

€ 

Jθ = S z( )δ r − R( ). For given 

€ 

B0 z( )  it is always possible to solve for 

€ 

S z( ) ,
but the field at the wire layer may be unacceptably large if the variations of 

€ 

B0 z( )  have
scale length smaller than 

€ 

R. This problem may be evaded in some applications by using
small radius solenoids where the beam radius is small. Recall the thin layer formula for
the on-axis field (Section 3),
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B0 z( ) =
µ0R
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(13.1)

Defining the Fourier integral transformations

€ 

˜ B 0 k( ), ˜ S k( )[ ] = dz
−∞
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∫ e− ikz B0 z( ),S z( )[ ] ,        

(13.2)

we get from eqn. (13.1)
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(13.3)

with 

€ 

x = z − ′ z ( ) R . Inserting the identity
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dx
0

∞

∫
cos kRx( )
x 2 +1

3 = kRK1 kR( )

(13.4)

gives the general relation

€ 

˜ B 0 k( ) = µ0
˜ S k( ) kRK1 kR( )  ,

(13.5)

where 

€ 

K1 is the modified Bessel function. Equation (13.5) gives 

€ 

˜ S  if 

€ 

˜ B 0  is derived from a
given field.

For the specific example,

€ 

B0 z( ) = B00e
−z 2 L2  ,

(13.6)

the transform of 

€ 

B0 z( )  and inversion for 

€ 

S z( )  are
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˜ B 0 k( ) = B00 πLe−k 2 L2 4  ,
(13.7)
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Setting 
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y = kL  gives the convenient form for computations:
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For 

€ 

R L→ 0  and 

€ 

z /L  not too large, this formula goes over to the expected form (using

€ 

xK1 x( )→1),

€ 

µ0S z( )→ B00e
−z 2 L2 .

(13.10)

However for finite 

€ 

R L , 

€ 

µ0S z( ) exceeds 

€ 

B00 at 

€ 

z = 0, e.g. by a factor of 2.5 when

€ 

R L=1.0. Also, oscillations of 

€ 

S z( )  appear; these provide guidance for the layout of wire
that can produce a desired on-axis field. The following figures plot 

€ 

µ0S z( ) B00  for
various values of 

€ 

R, with 

€ 

L =1.0 .

 R/L=.01

R/L=.5

R/L=1



R/L=2

14. Misaligned and Tilted Solenoid

So far we have only treated axisymmetric systems, with field components 

€ 

Br r,z( )
and

€ 

Bz r,z( ) . There are always small deviations from this convenient symmetry because of
imperfections in design and manufacture, stress, and positioning errors. These
imperfections can have a significant effect on a transported ion beam, so it is necessary to
specify maximum allowed deviations and make precise field measurements. However,
the restricted problem of the effect of positioning errors on the field can be treated
analytically as presented below.

The field of a single magnet is considered to be ideal and perfectly characterized
in its own coordinate frame. It greatly simplifies the formalism to use Cartesian
coordinates. For example if ( )zB0  is the known on-axis field in the absence of a

positioning error, then

( ) ( ) ( ) ...
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yxyzByzB
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is the magnet’s ideal near-axis field.

A misalignment is simply a translation of the magnet center by the vector

zzyyxx eeeT ˆˆˆ Δ+Δ+Δ=


  , (14.2)

with displacements 

€ 

Δ i  typically less than 

€ 

±10−3m . The misaligned field is obtained from
eqn. (14-1) simply by substituting the displacement:

€ 

B = B
I
x −Δ x,y −Δ y,z −Δ z( )  . (14.3)

A second type of positioning error is a tilt, which holds a magnet’s center fixed
and orients its axis at an angle α  with respect to the system axis, typically with α  less
than 310−  radians. The tilted magnet axis points in the direction of the unit vector

€ 

ˆ e = sin α( )cos β( ) ˆ e x + sin α( )sin β( ) ˆ e y + cos α( ) ˆ e z  , (14.4)

where β  is the angle of the projection of ê  in the yx −  plane. The two angles ( )βα ,  are
the polar coordinates of ê , the usual symbols 

€ 

θ,ϕ( ) having been used for other quantities.
A net azimuthal rotation of a magnet around its own axis does not need to be considered
since it does not change the field.

The coordinates of a fixed point in the system frame are denoted by 

€ 

x, y,z( )  and
in the translated and rotated magnet frame by 

€ 

X,Y,Z( ). These coordinate sets are related
by the inhomogeneous linear transformation
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where 
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Rij( ) is the orthogonal matrix
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Eqn. (14.6) may be derived by multiplying the matrices for successive rotations of the
magnet’s coordinate frame through angles 

€ 

β, α, and −β .

The field components of the rotated and translated magnet are then found by applying the
transpose of 

€ 

Rij( ) :

€ 

Bx x, y,z( ) = R11Bx
I X,Y,Z( ) + R21By

I X,Y,Z( ) + R31Bz
I X,Y,Z( ) , (14.7a)

€ 

By x, y,z( ) = R12Bx
I X,Y,Z( ) + R22By

I X,Y,Z( ) + R32Bz
I X,Y,Z( )  , (14.7b)
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xz ,,,,,,,, 332313 ++=  . (14.7c)

The rotation angles 

€ 

α,β( )  are general, but since 

€ 

α  is usually very small for tilt
errors, the rotation matrix can be well approximated by letting 

€ 

cos α( )→1 and

€ 

sin α( )→α . Defining the small tilt angles in the 

€ 

x  and 

€ 

y  directions:

€ 

θx =α cos β( ), θy =α sin β( ),          (14.8a,b)

the approximate matrix is then
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Rij( ) ≈
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0 1 −θy
θx θy 1
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This is not quite orthogonal and leads to small violations of 

€ 

∇ ⋅ B = 0. Keeping only terms
which are linear in 

€ 

θx, θy, Δ x, Δ y, x, y( ) , we have the approximate near-axis field:

€ 

Bx ≈ −
1
2

′ B 0 z −Δ z( ) x −Δ x( ) −θx z −Δ z( )[ ] + θxB0 z −Δ z( )   ,           (14.10a)

€ 

By ≈ −
1
2

′ B 0 z −Δ z( ) y −Δ x( ) −θy z −Δ z( )[ ] + θyB0 z −Δ z( )   ,           (14.10b)

€ 

Bz ≈ B0 z −Δ z( )  .           (14.10c)

15. Multiple Channels – Cross Talk

We have treated a system of solenoidal magnets that are centered on a single
straight axis, except for misalignments and tilts, which are usually small. More



complicated systems are of interest in which solenoids are positioned along several axes,
which may have differing orientations. For example a multiple-beam linac may employ
parallel closely-packed solenoid channels, while a system of solenoids designed to bring
multiple beams to a single focal spot may have several orientations. In such cases the
problem of interference between channels (cross talk) is severe, and it is important to
make good estimates of the unwanted field components. This does not mean that any
significant cross talk is unacceptable. Generally the effects of unwanted fields can be
greatly reduced by a symmetrical layout of channels and the addition of weak bends and
quadrupoles around each channel.

We need a simple formula for the residual field of a set of solenoids with arbitrary
positions and orientations. This is provided by a generalization of equation (11.21) for the
global potential of a semi-infinite current layer:

( ) ( ) ( )zHrJzrJ −= θθ , , (15.1)
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, (15.2)
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Here we truncated after the lowest moments:
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Sr2 = drr2
0

∞

∫ Jθ , Sr
4 = drr4
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∫ Jθ r( ) .  (15.4)

For a thin current layer with radius R, we have 22 Rr =  and 44 Rr = . For a thick uniform
current layer between 1R  and 2R :
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r2 =
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3

3 R2 − R1( )
, r4 =

R2
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5

5 R2 − R1( )
.          (15.5a,b)

Suppose a solenoid end, denoted by subscript i, is located at ir  and has direction

iê ; then its global potential is obtained by substituting into eqn. (15.3) 

€ 

r → r − ri  and
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2
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 . (15.6)

The quantities ,, 2rS  and 4r are unchanged; since ϕ  is a scalar quantity we have
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Each magnet contributes two terms of this type. For example if the downstream end is at

€ 

r2  and the magnet wire layer length is  , then the upstream end is at   

€ 

r1 = r2 − ˆ e . The
overall minus sign in eqn. (15.7) is changed to a plus for the upstream magnet end. The
total residual field is simply

i
i

residual
B ϕ∑∇=  , (15.8)

with applicable values of 

€ 

±S,ri,r2,  and 

€ 

r4 .

We have included only the two lowest-order terms in the expansion ofϕ ; this
should be sufficient for nearly any estimate. In fact the first (monopole) term,

€ 

ϕ i ≈ −
µ0Si r

2( )
i

4 r − ri
 , (15.9)

should be a good rough guide. The field of the “monopole” term,

€ 

Bi

residual
=∇ϕ i ≈

µ0Si r
2( )

i
r − ri( )

4 r − ri
3  , (15.10)

is just a spherically symmetrical field with the same net  flux as the magnet’s direct field.

16. Magnetic Materials Basics



There are several reasons for placing highly permeable material around solenoidal
wire layers: confining return flux, shaping fields, and reducing stored field energy. It is
also possible to make a permanent magnet solenoid. Another application of magnetic
materials is in the core of an induction module for acceleration, and also in limiting the
high frequency impedance of an acceleration gap. The latter two examples involve time-
dependent fields that do not have solenoidal symmetry and are not considered here.

16.1 Ferromagnetism

We are primarily interested in highly-permeable ferromagnetic materials, i.e.
those where parallel alignment of atomic magnetic moments produces strong fields in
response to weak externally-applied fields. Paramagnetic and diamagnetic materials are
not of interest since their induced fields are very small. While the subject of magnetic
materials is too vast (and beyond our competence) to even begin a summary here, a few
remarks are made for background and clarity. For details see references [16-1, 2, 3].

At temperatures below their Curie points Fe, Co, and Ni display spontaneous
magnetization, in which the atomic magnetic moments line up in parallel to minimize the
local energy density, i.e. they have the maximum value for projection in a particular
direction. These atomic moments are smaller by a factor of several in the ferromagnetic
material than in the isolated atoms. A typical magnetic domain, in which the moments are
all essentially parallel, is only microns in diameter, and a bulk material sample is usually
made up of many small crystals, each containing many such domains. A macroscopic
sample’s total energy also includes contributions from small-scale fields around the
domains as well as magnetostriction and domain wall structure. The small domain size
and random orientation minimizes the total energy in the absence of an applied field.
These features can be viewed as the result of a competition between atomic and
macroscopic (but small scale) forces. However, the domains resist reorientation, so even
a very soft (easily magnetized) material can be in a persistent magnetized state of non-
minimum energy in the absence of any external excitation. The three room-temperature
ferromagnetic elements are often alloyed with each other and/or other elements such as
Cr, Si, Al, Mn, Cu, etc. to produce desired characteristics while retaining ferromagnetic
features. A small amount of carbon is usually also present in iron as a separate phase
mixed with the magnetic crystals.

Below 912o C the stable phase of pure iron is a body-centered-cubic crystal with
Curie point 770o C. The magnetic domains are usually aligned in the directions of the
three cubic axes (say 

€ 

ˆ e x, ˆ e y, ˆ e z ) This material is often referred to as “ferrite” – not to be

confused with the ferrimagnetic iron oxide ceramics of the same name, which are used in
rapidly-pulsed transformer cores. Nearly pure iron with about .1% carbon (low carbon
steel) has the combined properties of high permeability and high saturation field desired
for application with high field solenoids. An example is 1010 steel (.08-.13% 

€ 

C , .3-
.6%

€ 

Mn ), which is adopted for the linac module design presented in section 20.



When an externally-generated field is applied to a permeable material the
domains tend to line up with it, again minimizing energy density. At low-to-moderate
fields this happens by domain wall movement of favorably oriented domains at the
expense of unfavorably oriented neighbors. For high external fields domains rotate into
alignment. The process of domain growth by wall movement is resisted by internal
fiction and occurs in tiny jumps with dissipation of energy as heat. For an excellent
qualitative discussion of this process see reference [16-3]. Permanent magnets are
manufactured with added elements that lock in an induced field along a preferred crystal
axis (the easy axis) as they cool from a melt; examples are SmCo5, Sm2Co17, and NdBFe.
Amorphous ferromagnetic alloys such as metglas are produced as uncrystalized tape by
very rapid cooling of a melt, and as such they have essentially zero anisotropy energy.
Although expensive, the insulated tape has ideal characteristics for transformers and
pulsed cores.

          16.2 Magnetization formalism

If in a macroscopic region of a material the mean (vector) magnetic dipole
moment per atom is 

€ 

m r( ), and 

€ 

n r( )  is the atomic number density, then

€ 

M r( ) = n r( ) m r( )  (16.1)

is called the magnetization density. For a highly permeable material this is an average

over many domains. We expect m  to be less than the maximum average projected

moment, which is on the order of a Bohr magneton (Fe: 2.218

€ 

mB , Co: 1.714

€ 

mB , Ni:
.604

€ 

mB ), but this limit is approached at high applied fields. It was mentioned in section

(2) that for solenoidal symmetry M  has the form

( ) ( ) zzzr ezrMezrMM ˆ,ˆ, +=  , (16.2)

and that it provides a current density









∂
∂

−
∂
∂

=∇=
r
M

z
M

eMxJ zr
mag

θ̂ . (16.3)

The derivation of this relation is presented in many E&M textbooks and is not repeated
here. However, its plausibility is made clear by considering a cylinder of length and
radius <<R , with uniform magnetization density zeM ˆ . Then eqn. (16.3) gives

( )RrMJ mag −= δθ , (16.4a)

and the total circulating current is



MI mag = . (16.4b)

We verify that this gives the correct net magnetic moment:

moment = area x current =   

€ 

πR2( ) M( )= volume x 

€ 

magnetization
density
 

 
 

 

 
 ∑=

atoms
zm  . (16.4c)

Eqn. (2.1a) is now generalized to

€ 

∇xB = µ 0 (J + J
mag
) = µ 0 (J +∇xM ) ,              (16.5)

where J  denotes the contribution from wire. It is convenient and conventional to define a
new field:

M
B

H −≡
0µ

 ,   (16.6)

so we write eqn. (16.5) as

JHx =∇ .   (16.7)

Eqn. (2.1b), 0=⋅∇ B , is still true, so from eqn. (16.6) we have

MH ⋅∇−=⋅∇ .   (16.8)

Therefore H  may be regarded as being generated by the combination of wire current

density J  and the scalar quantity M⋅∇−  (sometimes called the magnetic pole density).

Applying a theorem of vector calculus [16-4], H may be derived from its curl and
divergence according to

∫∫
−′

′⋅∇′′
∇+

−′

′′
∇=

rr

Mrd

rr

Jrd
xH

ππ 44

33

,   (16.9)

assuming  the sources vanish at large r  . It is useful to think of H  as the part of B  that

is produced by distributed sources 

€ 

J and ∇ ⋅ M , while M  is the local contribution to

B .

We have followed SI convention in defining H , so in vacuum it differs from B

by the factor 1
0
−µ . Unfortunately this causes B and H  to have different units; these are



Tesla or Webers/m2 for B  and Ampere/m for H  and M . If  B  is 1.0T in vacuum then

H is 795775 Ampere/m. Sometimes 

€ 

H  is defined as 

€ 

H = B −µ0M  instead of eqn. (16.6)

to avoid this inconvenience. If Gaussian units are used then the factor 0µ  in eqn. (16.6) is

dropped and B , H , and M  all have units of gauss (1.0 gauss = 10-4T), but for H  this
unit is called the oersted. Also, for Gaussian units factors of 4π and c appear as follows:

.4,
4

,4,

MHJ
c

Hx

MBHMxcJ
mag

⋅∇−=⋅∇=∇

−=∇=

π
π

π

 There is considerable variety in the names given for B  and H , although they
tend to reflect their respective properties or uses. Some of these names are

B : magnetic field, magnetic induction, magnetic flux density.

      H : magnetic field, magnetic intensity, magnetization field.

16.3 B-H relations and jump conditions

So far we have not related H  to B  except by its definition, eqn. (16.6). In fact for
a permeable ferromagnetic material there is no completely fixed relation except

00 MMHB <=−µ  , (16.10)

with 0M  the magnetization density within a single domain. For example, pure iron

(natural isotopic mix) at 0 Kelvin has

€ 

ρ = 7.87x103 kg m3 , atomic mass 

€ 

= 9.273x10−26kg, m mB = 2.218.

Inserting the natural constants

€ 

mB = 9.274x10−24 Am2, µ0 = 4πx10−7T −m A,
We get

€ 

M0 =
ρ
mass

m
mB

mB =1.746x106 A
m
,        

€ 

µ0M0 = 2.194T.

Unalloyed iron with very small amounts of carbon can approach this level of
magnetization. An alloy of iron and cobalt (70% 

€ 

Fe , 30% 

€ 

Co) can increase 

€ 

M0  by 10%.



The value of M in a macroscopic sample actually depends on its history of

exposure to externally generated fields as well as the instantaneous value of H . By
contrast a linear relation characterizes good permanent magnet blocks:

€ 

B = ˆ e II Brem + µ0µII
r HII( ) + ˆ e ⊥µ0µ⊥

r H⊥ , (16.11)

where II and ⊥ refer to directions along and normal to the easy axis of magnetization.
Here remB , called the remenant field, is simply the “permanent” value of 

€ 

µ0M in a long

sample, and the relative permeabilities r
IIµ  and r

⊥µ  are constants out to large values of H
and typically exceed unity by less than 10%. For very large reverse 

€ 

µ0H  (depending on
material but ideally of order remB  or greater) a block’s properties become nonlinear and
change irreversibly.

It is apparent that the commonly-assumed linear, isotropic relation

HB µ= (16.12)

is of limited validity except for paramagnetic and diamagnetic substances at low fields.
Nevertheless its use is sometimes a justifiable approximation. For example cast iron
excited from an initial state of no remanant field exhibits such a linear relationship out to

TB 3.≈ , with 

€ 

µ ≈ 400µ0. Some types of steel have µ greater than 0
410 µ . Confusing the

issue, eqn. (16.12) is often regarded as a definition of µ for whatever B  and H are
present, as long as they are parallel. If we assume the validity of eqn. (16.12) then the
following definitions are made:

0µµµ ≡≡ rmK (16.13)

is the relative permeability, and

1−= mm Kχ (16.14)

is the magnetic susceptibility. From the definition of H  we then have

HHHKH
B

M mm χ
µ

=−=−=
0

. (16.15)

An improvement on (16.12), used in some computations, is

€ 

B = B0 + µ H −H 0( ), (16.16)



where 0B  and 0H are some particular values and µ  is a local coefficient.

For many computations it is simply assumed that ∞→0µµ , i.e. H  vanishes in

the highly permeable material. However, to compute 

€ 

B inside the material requires
specification of details about the permeability, even though it approaches infinity – see
section (18).

If B and H  are to be determined by solution of the coupled underlying
differential equations, then jump conditions at vacuum-material interfaces are required.
From eqns. (16.7) and (2.1b) these are

tH  is continuous,           (16.17a)

nB  is continuous,           (16.17b)

where t  and n  refer to components tangential and normal to the interface.

These jump conditions suggest the utility of a highly permeable material for flux

control or field shaping. Since H0µ can essentially vanish in the material, its tangential

component on the vacuum side of the boundary also vanishes, as does the vacuum

tangential component of B . But the vacuum field can be derived from a scalar potential,

€ 

B = µ0∇φ , which is single valued around the material if no wire is enclosed. Therefore φ
is constant on the material surface. By analogy with electrostatics, the material acts like a
conducting surface, and strong normal fields may be localized to particular locations
where the surface is strongly curved. Roughly speaking the field is channeled in and out
of the material where desired, and routed away from locations (such as an induction core)
where it could cause a problem. It is also apparent that stored energy might be reduced in
this way since energy density in the material is roughly 02 ≈BH , although the
concentration of flux in particular locations outside the material tends to increase stored
energy density. The design of the poles and yoke of a cyclotron is an application of these
ideas.

Field calculations for highly permeable materials are complicated by both non-
linearity of HB −  curves and the phenomenon of hysteresis. The latter is closely related
to internal dissipation of energy during excitation and de-excitation. Following the

textbooks, we imagine that in a macroscopic region of material B  and H  are parallel
(more about this assumption below) and H  is increasing or decreasing slowly with time.
Depending on the sign of 

€ 

dH dt  two different curves are generated. If  H  is cyclical, a
closed loop in the HB −  plane is produced. If sufficiently large values of H  are in the
cycle, so that the material is pushed well into saturation, then a maximal hysteresis loop
is generated, and all other loops lie somewhere inside of it. The maximal hysteresis loop
is the boundary of accessible points in the HB − plane under the assumptions of
parallelism and slow variation. This is considerably more restrictive than the condition



(16.10). The intercepts of the maximal hysteresis curve with the 

€ 

B and 

€ 

H  axes are called
respectively the remanence 

€ 

±Br( )  and coercive force 

€ 

±Hc( ) . Some loops have zero bias

current, i.e. no mean H , and form a nested set around the origin ( )0== HB . Other
(biased) loops are offset from the origin and may or may not encircle it. In this picture we
assume that the magnet is excited slowly enough that eddy currents are not appreciable
and that magnetic domains have time to adjust their walls or orientations. All closed
loops must cycle in a counter-clockwise direction to avoid a violation of the second law
of thermodynamics. To see this, note that the differential work done by an external circuit
is HdB  per unit volume. A clockwise loop would extract energy into the circuit and cool
the material (eliminating any need for controlled fusion).  Through every point ( )HB,
interior to the maximal loop we may draw a pair of paths, which are followed depending
on whether H  is increasing or decreasing. A grid of crossing paths covers the accessible

€ 

B −H  space, and any point may be reached by traversing several paths in their allowed
directions. Complete demagnetization can be done by cyclingH with gradually
decreasing amplitude.

16.4 Magnetization curve

Since ferromagnetic materials have a nonlinear magnetization response when
driven over a large range, a generalization of eqn. (16.12) is required for computations.
Usually it is assumed that a material is excited from an initially unmagnetized state and
that H  only increases in this process, so there is no ambiguity from hysteresis. Then
B follows a known “magnetization curve”, i.e. ( )HFB =  - see the accompanying figure
for examples (from Chao and Tigner, Handbook of Accelerator Physics and Engineering,
World Scientific, 1999.) Computations may be made by setting

€ 

B = HF r,H( ) H  , (16.18)

which assumesB and H  remain parallel everywhere. This assumption works if the
response is linear, i.e. 

€ 

F = µ r( )H . To demonstrate this we write eqn. (16.9) in the form

€ 

Hi = Hi
J +

d3 ′ r 
4π∫ ′ M j

∂2

∂xi∂x j

1
′ r − r

 , (16.19)

with subscripts ( )ji,  denoting Cartesian components with a sum over 

€ 

j , and 
J

H is the

part of H  produced by currents in wire. For the linear isotropic response we have

€ 

M ′ r ( ) = χm ′ r ( )H ′ r ( ) , (16.20)

with 1−= o
m µµχ  , and eqn. (16.19) can be reduced to a set of coupled linear equations

by dividing the entire space into small volumes (finite element method). H is then



obtained from 
J

H by a single matrix inversion, and the assumption of parallelism has
lead to a unique solution. For a non-linear magnetization curve, we can use

€ 

M =
B
µ0

−H =
F r,H( )

µ0 H
−1

 

 

 
 

 

 

 
 H , (16.21)

and it is necessary to iterate to solve eqn. (16.19). Unfortunately it is not clear that this
procedure leads to the physically correct solution, although this is generally assumed.
Consider a system that is excited from the un-magnetized state by slowly increasing the

wire current. If the material response is linear then B and H  simply scale up proportional
to current without changing direction. But the situation is changed when the material

saturates and HB 0µ→ ; fields then approximate a vacuum pattern determined from the
wire current alone, and in general they have a different direction than when the

permeable material is effective. During the current increase B  and H  have changed
direction; but this is different from the simple experimental conditions in which
magnetization curves are determined. It is conceivable that during a gradually changing

direction of H , that M  (and therefore B ) stays parallel, but this is an additional material
property to be determined by experiment.

A mathematical model of hysteresis has been described in an interesting series of
reports - see [16-5]. Recall that every HB − point inside the limiting cycle is crossed by
two curves with slopes dHdB  depending on whether H  is increasing or decreasing.
These slopes are found to be well approximated by the assumed formula

€ 

dB
dH

= ±α f H( ) − B[ ] + g H( )  , (16.22)

where α is a constant and ( )gf ,  are material-dependent functions with examples given
in the cited report. The choice -or +→±  depends respectively on H  increasing or
decreasing. A generalization that includes isotropic permanent magnets is written

€ 

dH
dB

= ±α ˜ f B( ) −H[ ] + ˜ g B( ) . (16.23)

The function g~  can be modified to include dependence on the rate of magnetization

( )dtdB . If α , f and g are known, then the magnetization curve ( )HF  can be found in

numerical form by integrating eqn. (16.22) from the origin ( )0== HB with increasing
H :

€ 

dB
dH

+αB =αf H( ) + g H( )  , (16.24)



€ 

F H( ) = B = d ′ H 
0

H
∫ αf ′ H ( ) + g ′ H ( )[ ]eα ′ H −H( )  . (16.25)

16.5 Permanent magnet solenoid

Finally we consider the simple permanent magnet solenoid consisting of an
annulus of constant magnetization zeM ˆ between radii 1R and 2R  and with length  ,
centered at 0=z . The magnetization currents are simply a pair of thin layers:

€ 

Jθ
mag = −

∂Mz

∂r
= M δ r − R2( ) −δ r − R1( )[ ]  . (16.26)

Applying the thin layer result, eqn. (4.5), we have the on-axis field
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 . (16.27)

This function is plotted below for ( )m0.1,m25.,m5.,T0.1 120 ==== RRMµ . Note

that 0B  is negative in the solenoid bore and positive outside, and its maximum absolute

value is only M019. µ . When such a solenoid is used as a particle beam lens, its focal

strength is proportional to the integral of 2
0B , so it is not a very effective use of material,

although such lenses have been used to confine electron beams in Klystrons. It can be
easily verified that

€ 

dz
−∞

+∞

∫ B0 z( ) = 0 . (16.28)

In fact this relation is true for any solenoid made only of magnetic materials since

JHx =∇  requires that the line integral of H  around any closed loop must equal the
enclosed wire current:

€ 

d∫ r ⋅H = I = 0  . (16.29)

In the present case we may take the integration loop along the entire axis and return at
large radius, where there is a vanishing contribution.





mu0M = 1.0;
R2 = .5;
R1 = .25;
l = 1.0;

B0[z_] = mu0M/
        2*((z + l/2)/((z + l/2)^2 + R2^2)^.5 - (z -
                l/2)/((z - l/2)^2 + R2^2)^.5 - (z +
                l/2)/((z + l/2)^2 + R1^2)^.5 + (z -
                l/2)/((z - l/2)^2 + R1^2)^.5);

Plot[B0[z], {z, -2, 2}];
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17. Wire Layer Embedded in a Highly Permeable Yoke

A simple geometry that displays flux confinement is a wire layer (of any shape)
that has net azimuthal current 

€ 

I  and is embedded in a long permeable annulus with

€ 

µ =∞. The inner radius of the annulus/yoke is at 

€ 

r = b, which is also the magnet’s bore
radius, and a narrow slot connects the wire layer to the bore at 

€ 

z = 0 (see figure).

Inside the bore, where

€ 

H =
B
µ0

=∇φ ,               (17.1a,b)

we have

€ 

∇2φ = 0, ∇2Bz = 0  .                     (17.2a,b)

Along the inner surface of the annulus 

€ 

φ is constant and 

€ 

Bz  vanishes, except at 

€ 

z = 0,
where 

€ 

φ jumps and 

€ 

Bz  is infinite:

€ 

φ b,z( ) =
− I 2 z < 0
+ I 2 z > 0,
 
 
 

(17.3)

€ 

Bz b,z( ) = µ0Iδ z( )  . (17.4)

Here the annulus is assumed to extend to 

€ 

z = ±∞  for computations.

To solve for 

€ 

Bz  in the magnet bore we apply a Fourier integral transform to eqn.
(17.2 b):

wire
slot

b
z

0



€ 

˜ B z r,k( ) = dz
−∞

+∞

∫ e− ikzBz r,z( )  , (17.5)

€ 

1
r
∂
∂r

r ∂
˜ B z
∂r

− k 2 ˜ B z = 0  . (17.6)

Equation (17.6) is satisfied by

€ 

˜ B z = f k( )I0 k r( ) , (17.7)

where 

€ 

I0  is the modified Bessel function and 

€ 

f k( ) is to be determined from the boundry
condition (17.4). Since we may write the delta function as

€ 

δ z( ) = dk
−∞

+∞

∫ eikz

2π
 , (17.8)

we have immediately from equations (17.4) and (17.7)

€ 

Bz = dk
−∞

+∞

∫ eikz

2π
˜ B z = µ0I dk

−∞

+∞

∫ eikz

2π
I0 k r( )
I0 k b( )

 . (17.9)

A convenient form for computations, that displays scaling with 

€ 

r
b  and 

€ 

z
b  is

€ 

Bz =
µ0I
πb

dy
cos y z b( )I0 yr b( )

I0 y( )0

∞

∫  , (17.10)

where 

€ 

y ≡ kb . The radial field is obtained from eqn. (17.9) by integrating 

€ 

∇ ⋅ B = 0:

€ 

Br = −µ0I dk
−∞

+∞

∫ k
k
i e

ikz

2π
I1 k r( )
I0 k b( )

(17.11)

€ 

=
µ0I
πb

dy
0

∞

∫ sin yz b( )
I1 yr b( )
I0 y( )

 . (17.12)

The bore field is displayed for several values of 

€ 

r
b  at the end of this section. A strong

(exponential) falloff with 

€ 

z b is apparent and contrasts sharply with the 

€ 

z −3  fall off from
a lens without a yoke. This calculation is formally equivalent to that of an electrostatic
field in a conducting pipe that is split at 

€ 

z = 0 and with a potential difference applied to
the two sides.

The potential 

€ 

φ can be derived from eqn. (17.9) by integration in 

€ 

z , however at
this point it is more instructive to use an expansion in ordinary Bessel functions:



€ 

φ =
I
2

+ Ai
i=1

∞

∑ J0 xi r b( )e−xi z b  , (17.13)

valid for 

€ 

z > 0. For 

€ 

z < 0, 

€ 

φ is determined by its antisymmetry:

€ 

φ = r,−
⋅

z
 
 
 

 
 
 = −φ r,z( )  , (17.14)

so the there is exponential decay in both directions. The

€ 

χ i are the zeros of 

€ 

J0, and the
coefficients 

€ 

Ai  are determined from the condition

€ 

0 = φ r,0( ) =
I
2

+ Ai
i=1

∞

∑ J0 xi r b( )  ; (17.15)

€ 

Ai = −
I

xiJ1 xi( )
 . (17.16)

We have for 

€ 

z > 0,

€ 

φ =
I
2
− I

i=1

∞

∑
J0 xi rb( )e−xi z b

xiJ1 xi( )
 , (17.17)

€ 

Bz = µ0
∂φ
∂z

= µ0
I
b i−1

∞

∑
J0 xi rb( )e−xi z b

J1 xi( )
 . (17.18)

The first five values of 

€ 

xi and 

€ 

J1 xi( )  are tabulated to aid in computations:

€ 

€ 

 .51914 74973
-.34026 48065
 .27145 22999
-.23245 98314
 .20654 64331

2.40482 55577
5.52007 81103
8.65372 79129

11.79153 44391
14.93091 77086

1
2
3
4
5

€ 

xi

€ 

J1 xi( )

€ 

i



The on-axis field can be calculated from either the Fourier integral or Bessel
series, although the latter is poorly convergent for 

€ 

z b ≈ 0. The leading term of the series
is a good approximation for 

€ 

z b ≥1:

€ 

B0 →
µ0I
b
e−x1 z b

J1 x1( )
 , (17.19)

but is large by a factor of 2.9 at 

€ 

z = 0. An excellent approximation for all 

€ 

z  is

€ 

B0 ≈
µ0I
b

1
J1 x1( )

1
2cosh x1 z sb( )[ ]S

(17.20)

with 

€ 

s =1.538781. This has maximum relative error of 

€ 

±2x10-4 at 

€ 

z b = 0,±.7b( ) .

€ 

Bz r,z( ) for r = 0, b 4,b 2( ) . In this case µ0I =1.0 and b =1.0.

18. Periodic Wire Layer with Highly a Permeable Yoke

Return flux can be channeled by a permeable annulus if the field there is kept
below saturation 

€ 

Bsat ≈1.0 - 2.0T for  iron( ) . For a periodic system of solenoids all having
the same polarity, the field in the annulus or yoke is roughly

2
1

2
2

bore
2

yoke RR

PBR
B

−
−≈


 ,   (18.1)



where R  is the wire radius, 1R and 2R  are the yoke radii, P  is the ratio of wire layer

length to period length, and boreB  is the peak bore field. The volume of the yoke should

be at least satbore BB  times the total volume of magnet bore to prevent stray flux from

entering the outside world. In practice there will be gaps in the yoke, so some flux will
bulge out anyway.

The field in the presence of a highly permeable yoke can be examined with the
simple periodic model:

  

€ 

Jθ =
Sδ r − R( ) −  2 < z <  2,
0  2 < z < P 2,

 
 
 

  
  (18.2)
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µ =
∞ R1 < r < R2,
0 other r,
 
 
 

  (18.3)

with 

€ 

R < R1 and 

€ 

Jθ  repeating with period P. The Fourier expansion of the current density
is

  

€ 

Jθ = δ r − R( ) S
P

+ δn
n=1

∞

∑ cos knz( )
 

 
 

 

 
 ≡ δ r − R( )S z( )  ,   (18.4)

with

  

€ 

δn =
2S
πn
sin πn

P
 

 
 

 

 
  ,  

€ 

kn =
2πn
P

 .          (18.5a,b)

In the yoke 0→= µBH  by assumption, and since the tangential components of H  at

1R  and 2R are continuous, we conclude the 00 == zz HB µ  at −= 1Rr and += 2Rr . Since

B  must vanish as ∞→r , it must also vanish for all 2Rr > . For 1Rr < we must simply
solve

€ 

∇2Bz = −µ0
1
r
∂
∂r
rJθ  ,   (18.6)

with the boundary condition 

€ 

Bz R1−( ) = 0.

The value of B inside the yoke is indeterminate unless more information is given
about the permeability, which must be assumed to be not quite infinite. For example,
suppose we have a non-linear magnetization curve



€ 

B =
H
H
F H( ) , (18.7a)

€ 

H =
B
B
F−1 B( ) . (18.7b)

Then in the yoke we must solve 

€ 

∇ ⋅ B = 0 along with
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∇x B
B
F−1 B( )

 

 

 
 

 

 

 
 

=∇xH = 0  .   (18.8)

The boundary conditions for the yoke interior are that rB be continuously joined to its

vacuum values at 1R and 2R  and that the net flux of the system vanish. For the simple
assumption that µ  is very large but constant, the Cartesian components of the yoke field
satisfy

€ 

∇2B =

€ 

∇∇ ⋅ B

€ 

−∇x ∇xB( ) = −∇x ∇xµH( ) = 0 .   (18.9)

Returning to the analytical model and assuming HB is infinite but constant in
the yoke, we have inside all four radial zones

02 =∇ zB . (18.10)

At zone boundaries ( )21,, RRR  both rB  and 

€ 

∂Bz ∂rare continuous, while zB  jumps
across the wire:

€ 

Bz R+,z( ) − Bz R−,z( ) = −µ0S z( )  . (18.11)

At the yoke boundaries it is also found that zB  jumps from zero in vacuum to a finite
value in the material that is found by solving the model equations. We proceed by solving
for the field produced by individual terms of the expansion eqn. (18.4) for θJ . First, the

term PS produces



  

€ 

Bz →

µ0S
P

0 < r < R,

0 R < r < R1,

−
R2

R2
2 − R1

2
µ0S
P

R1 < r < R2,

0 R2 < r <∞.

 

 

 
 
 

 

 
 
 

(18.12)

This function has net zero flux, vanishes at ∞=r , and has no on-axis contribution from
the permeable material (as discussed in section (16)). Next consider the field from any
periodic term of eqn. (18.4); this has the form
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S z( )→δn cos knz( ) ,           (18.13a)

€ 

Bz → µ0 fn r( )δn cos knz( ),                       (18.13b)

€ 

Br → µ0gn r( )δn sin knz( ) .           (18.13c)

Inside each zone 

€ 

fn  satisfies

€ 

1
r
d
dr
r dfn
dr

− kn
2 fn = 0 , (18.14)

and from 

€ 

∇ × B = 0 , inside any zone

€ 

gn =
1
kn
∂fn
∂r

. (18.15)

Equation (18.14) is a modified Bessel equation, so 

€ 

fn r( ) is a linear combination of

€ 

I0 knr( ) and 

€ 

K0 knr( ) in every zone, and 

€ 

gn r( ) is the combination of 

€ 

I1 knr( )  and 

€ 

K1 knr( )
determined from eqn. (18.15). Applying the various boundary and jump conditions and
finiteness at 0=r  we find, suppressing the subscript 

€ 

n( ):

Rr <<0

€ 

f r( ) = AI0 kr( ),           (18.16a)

€ 

g r( ) = AI1 kr( )  ,                       (18.16b)
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∞<< rR2

( ) ( ) 0== rgrf ,           (18.16g)

with coefficients
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A =
kR

I0 kR1( )
I1 kR( )K0 kR1( ) + K1 kR( )I0 kR1( )[ ],           (18.17a)

€ 

B = kRI1 kR( )K0 kR1( ) ,                     (18.17b)
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C = B
RI1 kR( )
R1I0 kR1( )

I1 kR1( )
I1 kR2( )

−
K1 kR1( )
K1 kR2( )

 

 
 

 

 
 

−1

.                                               (18.17c)

We have used the Bessel function identity

€ 

I1 x( )K0 x( ) + I0 x( )K1 x( ) =
1
x

    (18.18)

to simplify these expressions.



Plots.

€ 

Bz  vs 

€ 

z  for various 

€ 

r  are given below for the case

  

€ 

R = .2, R1 = .6, R2 = .8, P =1.0,  = .8, µ0S P =10.0T( ) . The suppression of the
external field in the zone 

€ 

R < r < R1 is evident – compare section (10).

        (Bore)
   r       Bz(r,0)

.000       11.79

.100       11.85

.195       11.99

       (External)
   r        Bz(r,0)

.25       -.4135

.40       -.1006

.55       -.0323



.19. Tosca© Model

Many computer programs have been written for the purpose of solving Laplace's
or Poisson's equation under given boundary conditions. A number of different numerical
solution methods exist for solving a system of partial differential equations; one of the
most commonly applied techniques is the finite element discretization method. Finite
element analysis (FEA) requires special enhancements, which are described briefly in this
chapter, to make it applicable to electromagnetic field calculations.

Computer programs most widely used in the accelerator engineering community
are the public domain code POISSON [i-7], and the commercial code Tosca© [1-7].
POISSON can simulate only 2d plane or axisymmetric geometries, whereas Tosca©

allows calculations in 2D and 3D. Since today's personal computers have become
sufficiently powerful, the fidelity of these codes is so superior that often simulations are
used to check measurements, and large magnetic devices are designed without the need
for building prototypes. For instance, a field accuracy of the order of parts in 106 is
required for simulating shielded superconducting NMR systems. Another application is
to cyclotrons with their stringent field accuracies (parts in 105), which can nowadays be
entirely designed using Tosca© alone.

 FEA codes are especially well suited for modeling magnetic field problems with
non-linear materials present, e.g. magnet steel or permanent magnets. Forces on
conductors and pole pieces can be easily calculated. In addition, harmonic or transient
field problems with eddy currents present can be solved. Eddy current heating as well as
magnetic forces can be coupled to thermal and structural FEA simulations for the
engineering design.

.19.1 General solution strategy in 3D

In this section the notation for fields differs somewhat from that used in the rest of
the report in order to correspond to Tosca© conventions. A detailed description of how to
numerically solve Maxwell's equations is beyond the scope of this report. Nevertheless,

        (Yoke)
   r         Bz(r,0)

.65        -1.526

.70        -1.508

.75        -1.498



since the computation of magnetic fields requires a few special numeric treatments, its
peculiarities are briefly mapped out here. We want to discretize Maxwell's equations:
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B
Ex

∂

∂
−=∇


  , (19.1a)
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D
Hx



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∂

∂
=∇   , (19.1b)

ρ=⋅∇ D


  , (19.1c)

0=⋅∇ B


  , (19.1d)

with   

€ 

 
D = ε

 
E ,  
 
B = µ

 
H ,  and 

 
j =σ

 
E  (or is specified). In these equations E


and H


 are the

electric and magnetic fields and D


and B


are the electric and magnetic flux densities. The
current density is denoted by j


, and ρ  denotes the charge density. The three material

functions 

€ 

ε,  µ,  and σ (permittivity, permeability, and conductivity) are in general
functions of the spatial coordinates and also nonlinear functions of the electromagnetic
field strength, e.g. saturation effects in metal. All three material properties may be
tensors, as in laminated transformer cores and permanent magnets.

The usual procedure for solving Maxwell's equations is to simplify them as far as

Figure 1: Example FEA grid of a solenoid magnet.



possible, first setting some of the quantities 

€ 

ε, µ, or σ  equal to constants if possible,
and then deducing a second order differential equation. This second-order differential
equation for some intermediate function (typically a vector potential, scalar potential, or
both) can then be discretized and numerically solved for realistically shaped structures by
means of finite difference, finite element, or integral methods. The finite element method
is based on division of the domain of these equations (volume of space in which the
equations are satisfied) into small volumes (the finite elements) as shown in Figure 1.
Within each finite element a simple polynomial is used to approximate the solution.

Consider first a Poisson equation describing an electric potential function 

€ 

Φ:
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 
∇ ⋅
 
E = −

 
∇ ⋅
 
∇ Φ =

ρ
ε0

  . (19.2)

Such an equation,
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∂z2
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ρ
ε0

  , (19.3)

can be easily discretized for computations. In order to define 

€ 

Φ, boundary conditions are
required; these may be either assigned values of 

€ 

Φ or its normal derivative x∂Φ∂  on a
surface. In all electrostatic field examples it is essential that the potential is defined at
least at one point in the domain, otherwise an infinite number of solutions could be
generated by adding an arbitrary constant to a particular solution.

The situation is slightly different for magnetic problems. In the magnetostatic
limit, Maxwell's equations reduce to

j
B

x



=∇ )(

µ
  , (19.4a)

0=⋅∇ B


  . (19.4b)

Since B


 is not "curl free", it follows that the magnetic flux density cannot be represented
by the gradient of a scalar potential as in the electrostatic case. It is convenient to split the
total field into two parts, a conductor source field and a gradient of a scalar potential, in
order to obtain a description of the field in terms of a simple scalar potential:

Φ∇−=


sHH   with 0=⋅∇ sH


  . Reduced scalar potential  (19.5)

The conductor source field intensity can be evaluated separately, for example by the

Biot-Savart law
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  . (19.6)



Introducing the scalar permeability 

€ 

µ and combining 0=⋅∇ B


 with the above two
equations, we have the partial differential equation for 

€ 

Φ:

0=⋅∇−Φ∇⋅∇ sH


µµ   , (19.7)

with sH


 calculated from eqn. (19.6).

The splitting of the magnetic field into a "curly" source part and a reduced scalar
potential part has finally reduced the problem to a purely scalar one. Equation (19.7), like
the Poisson equation for electrostatic fields, can be solved using the finite element
method. Unfortunately, this method leads to large computational errors, especially in
volumes where sH


and Φ∇


strongly cancel each other. This difficulty can be avoided

when currents are not flowing in the magnetic materials. Exterior to the volumes where
current flows the total field can be represented using the "total scalar potential"  

€ 

Ψ:

Ψ∇−=


H   , Total scalar potential  (19.8)

which satisfies:

0=Ψ∇⋅∇


µ   . (19.9)

By combining the two representations (the total and the reduced scalar potentials)
cancellation difficulties can be completely avoided. Therefore, the minimal combination
for magnetic field simulations consists of using the reduced potential plus 

€ 

Hs only inside
volumes where currents flow and using the total scalar potential everywhere else. On the
interface between the total and reduced potential spaces the two potentials are linked
together (internally in the computer code) by applying the conditions of normal B and
tangential H continuity. This procedure has important consequences for setting up the
simulation model. The reduced potential volume should completely enclose any coils in
such a way that it is not possible to find a closed path in total potential which encloses a
non-zero current. In other words any closed contour integral of H through any total scalar
region must approach zero, since otherwise the solution would be multi-valued.

.19.2 Solution strategy in 2D

In 2D simulations, using either cylindrical or rectangular coordinates, the solution
strategy for Maxwell's equations can be dramatically simplified compared to the general
3D strategy outline above. Since the primary topic of this report is the calculation of
axisymmetric solenoid systems, we will describe the 2D simulation method in more
detail, and will give a few computation examples in the next chapter. Still, for a solenoid-
based particle accelerator design, 3D simulations would be necessary in regions where
several solenoid beamlines are transversely merged into a single beamline, or where
solenoid lead effects become critical.

By using a vector potential, AxB


∇= , we can rewrite the relevant Maxwell's
equation in the magnetostatic limit:
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Imposing gauge condition 0=⋅∇ A


, and taking into account the now two-dimensional
symmetry of the physical geometry, equation (19.10) can be rewritten:
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Where only the θ  components (A, j) are present. In two dimensions Maxwell's equations
reduce to a scalar equation, which can be easily solved by computational methods.
Contrary to three-dimensional simulations where the model geometry has to be divided
into regions of "total" and "reduced" scalar potentials to gain a numerical scalar potential
description, the equation to be solved in 2D is automatically of an effectively scalar
nature. No division into different regions has to be performed in 2D. The magnetic field
components are simply

z
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∂
−=   , (19.12a)
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This has an important consequence: Contrary to three dimensions, in a planar two-
dimensional simulation the equipotential lines of the vector potential (which is a scalar
quantity in 2D) are equal to the magnetic field lines (for axisymmetric simulations a
modified scalar potential Ar ⋅  has to be used). That fact makes two-dimensional
simulations much more intuitive and accessible from a practical point of view compared
to any three-dimensional simulation.

.19.3 Example

Figure (2) shows a typical axisymmetric model setup of a solenoid with an iron
enclosure. Figure (3) shows the finite element mesh as generated by Tosca© -2D. The
material properties have to be defined in the code. For air and the copper conductor the
relative permeability is set to 1, for the return yoke a typical B-H magnetization curve for
1010 carbon steel, as shown in figure 4, is used.

As shown in figure 5, correct boundary conditions have to be set to solve the
problem numerically. For axisymmetric simulations the center axis requires a "tangential
field only" (Dirichlet) boundary condition. The air volume enclosing the region of
interest has to be chosen as large as possible to minimize the effect of the far-end
boundary conditions. It is always a good practice to check that the far-field boundaries
have been placed far enough by changing the normal field to tangential field boundaries.
The change in the magnetic field in the region of interest should be minimal, otherwise
the outer boundaries have not been moved far enough out. In the example the current
density in the coil field region has been set to 

€ 

4.7x106  A/m2. All that information is
stored in a binary database file which is processed by the analysis module of the Tosca©

code.





Figure 2: Axisymmetric Tosca©-2D simulation setup. As a first step, polygons
must be drawn resembling the model geometry of interest. The background air
area must be chosen large enough so that the model boundaries don't influence the
solution in the area of interest.

Figure 3: Tetrahedral finite element mesh as generated by the Tosca-2D mesh
generator. The mesh has been chosen to be finer on axis and inside the solenoid
area of interest. It gradually becomes coarser towards the outside model
boundaries in order to minimize computation time.



Figure 4: Each material inside the Tosca model has to be defined. For instance, the
relative permeabilities of air and the coil have to be set to 1. For the coil region, a
current density must be prescribed. Non-linear material properties are defined
through permeability tables as shown in this figure.

Figure 5: Boundary conditions have to be set to solve the problem numerically.
For axisymmetric simulations the center axis requires a "tangential field only"
(Dirichlet) boundary condition. The air volume enclosing the region of interest has
to be chosen as large as possible to minimize the effect of the far-end boundary
conditions.



 Computation of the vector potential proceeds iteratively for each mesh point. The
computation proceeds in the iron region with the determination of vector potential,
magnetic induction, and permeability at each mesh point. The vector potentials A are first
computed at all points by assuming a constant value of permeability, then the components
of the induction B are determined as partial derivatives of A, and the permeability values
as a function of the absolute values of B are read from a B-H curve table. Then the whole
process is repeated with adjusted permeability values: cycling is continued until the
changes in permeability are all below a specified value.

Once the field computation has been performed the database is read into a post-
processor for further evaluation. Figure 6 shows the model geometry with the magnetic
flux lines displayed. Figure 7 shows contour zones of the total magnitude of the magnetic
flux density, and figure 8 shows a read out of the magnetic field on axis.

Figure 6: Model geometry with the magnetic flux lines displayed.



                                                  

Figure 8: Magnetic flux density in Tesla along the solenoid axis.

Figure 7: Colored contour zones of the absolute magnitude of the magnetic flux
density. As can be clearly seen, most of the magnetic return flux is concentrated in
the iron yoke, which starts to saturate. Finite element analysis is best suited for
predicting the magnetic field distribution in cases saturated materials with non-
linear magnetic properties are present.



                                                                                                                                                      

20. Application of Tosca© to Induction Linac Design

20.1 Introduction

Recently there has been renewed interest in relatively low energy modular
induction accelerators to drive close-coupled HIF targets (~75 MV acceleration voltage
of Ar8+, corresponding to 600 MeV kinetic energy). Similar, smaller-scale designs are
suggested for a possible facility to perform high energy density physics experiments.
These designs utilize solenoid beam transport because of its favorable scaling at the
desired ion mass and kinetic energy.

An example "modular solenoid driver" [20-1] would consist of 40 beamlines (20
on each side of the final focus chamber). Each beamline would have a high current Ar8+

injector and a pre-bunch section to compress the beam for injection into a solenoid-based
modular induction linac. The total linac length would be only 75 meters. The accelerated
beams, which have an approximately 15% energy tilt imposed, compress in a neutralized
drift section (~260 meters long) before final radial compression inside a liquid-vortex
flibe chamber with a solenoid focusing magnet set.

Figure 1 shows the mechanical layout of the high-energy end of such a modular
solenoid linac. The main dimensions of a linac cell are given in figure 2. The transport
solenoids are superconducting Nb3Sn magnets producing 12 Tesla peak axial magnetic
field. Finite-element based electromagnetic simulation tools are utilized in several design
aspects of the linear accelerator:

1. The solenoids are embedded inside induction cores of high permeability. To
shield the solenoid return flux from the induction cores, the superconducting
winding structure is enclosed by a thick, soft-magnetic steel shell. Finite
element codes are reliable tools for calculating the effects of the permeable
materials and allow optimization of the acceleration cell geometry.

2. The ion beams exiting the 20 modular solenoid linacs must be matched into the
focusing system leading to the fusion target. Three-dimensional finite element
codes can reliably calculate the dipole and higher-order field contributions of
the solenoid magnetic fields at the end of the linac structure, especially if
permeable materials are present to channel the linac fields’ return flux.

3. Finite element codes are used to design the superconducting winding pack.
They allow the exact coil dimensioning using critical current load lines.

4. If one solenoid along a linac string quenches, the forces on the neighboring
solenoids will be imbalanced. Finite element codes allow one to calculate these
forces and to dimension a sufficient support system. The electromagnetic
simulation models are directly linked with structural models to design the
solenoid clamping structure.



                                                                                                                                                      

        Figure 1: A modular solenoid driver would use strong solenoids for focusing the heavy
        ion beam.



                                                                                                                                                      

Figure 2: 2D drawing showing the main dimension of the driver induction cell.



                                                                                                                                                      

Figure 3: Example FEA setup of a modular solenoid driver.

20.2 Example

As an example of how electromagnetic modeling can be utilized to optimize the
modular solenoid driver architecture, we look at the effect of adding iron outside the
superconducting solenoid winding. We will also discus how to specify the
superconducting winding structure.

Figure 3 shows a simulation setup for an infinitely long solenoid string consisting
of a (thin) superconducting wire pack surrounded by an iron cylinder. The rest of the
model consists of air with a relative permeability equal to 1 the location of the induction
cells is indicated, but we will not include their material properties in this example. The
beam travels along the vertical axis, and the radial coordinate is the horizontal axis.

Such a simulation should strongly take advantage of the model symmetry. First of
all the simulation is 2D axisymmetric with the beam axis as symmetry axis. Second,
because of the infinite nature of the problem the top and bottom model boundaries are
symmetry planes through the centers of the solenoids. The correct numerical boundary
conditions are shown in figure 4. The background air (vacuum) volume extends radially
far outside to minimize the influence of the far field boundary condition, which was set to
tangential 

€ 

Br = 0 .



                                                                                                                                                      

Figure 4: The FEA boundary conditions are set to simulate an infinite string of
solenoids. A 2D simulation is sufficient because of the axisymmetric nature of the
problem.

Figure 5 shows in more detail the region around one single solenoid and the finite
element grid generated by the Tosca© 2D simulation code. To enhance the accuracy of
the simulation model, regions close to the beam axis - including the solenoid winding and
the iron regions - are modeled using mapped hexagonal finite elements. The background
air model uses tetragonal elements, which allow gradually increasing element sizes. In
that way the model can have a very fine grid around the areas of interest and a coarser
grid at the far field boundaries.

After meshing the problem geometry the material and conductor properties have
to be defined. Figure 6 shows the permeability curve for 1010 steel, a soft magnetic steel
used for building electromagnets.

Figure 7 shows a graph of critical current densities for different superconducting
cable materials [2]. The blue curve with blue squares shows the critical current line for
Nb3Sn at a temperature of 4.2 Kelvin, the temperature of the liquid helium coolant. The
critical current density is the maximum current density a superconducting wire can
transport without loosing its superconductivity, which is dependent on the applied
magnetic field. The higher the magnetic field the lower the critical current density. Nb3Sn
has similar critical current densities as NbTi but can be operated at much higher applied
magnetic fields.

It is important to realize that the critical current densities are shown for single
stranded superconducting wire. The actual current densities used as input in the
simulations to define the conductor regions are significantly lower. Figure 8 shows a



                                                                                                                                                      
cross sections of a few actual superconducting wires. It shows the superconducting wire
strands embedded inside a copper matrix whose purpose is two-fold.

Figure 5: Example 2D FEA grid of a solenoid magnet.

First it helps to locally stabilize the superconducting wire. On a microscopic scale, the
superconducting state is fluctuating, and a sufficiently sized copper matrix helps to
stabilize the superconducting condition. Second, the wire has to be able to transport all
the current in cases where the wire quenches and superconductivity is lost entirely.
Enough copper must be available to transport the current without melting the wire.



                                                                                                                                                      

Figure 6: BH curve for 1010 steel, a soft magnetic steel used for building electromagnets.

In designing a magnet, what really matters is the overall "engineering current
density". It is given by the superconducting strand critical current density times the
superconducting material to copper ratio times the packing factor of the actually wound
superconducting wire. Figure 8 demonstrates the packing of commercial round wires in a
magnet winding.

         cwireoverall J
ratio Cu/SC

ctorpacking faJctorpacking faJ
1

⋅=⋅=

with

overallJ  ... "engineering current density"

factor packing  ... takes account of space occupied by insulation, eventual
cooling channels, mechanical reinforcement, epoxy, etc.

oCu/Sc rati  ... ratio of copper to superconducting material
Table 1 determines the maximum Cu/SC ratio by limiting the
maximum current density to be carried by the copper matrix to
1500 A/mm@ in case of a complete quench.

cJ  ... critical current density for single superconducting strand



                                                                                                                                                      

Figure 7: Critical current densities for commercial superconducting wires [2]. The
blue curve with blue squares shows the critical current line for Nb3Sn at 4.2K.



                                                                                                                                                      
Table 1 summarizes the actual “engineering current densities used to specify the
conductors in the simulations dependent on the applied magnetic field. An additional

 

Figure 8: Cross section of various actual superconducting wires. The superconducting
filaments, which are actually twisted, are embedded inside a copper matrix. Additional
space around the wires is needed for insulation, structural epoxy, or cooling channels.

30% safety margin is applied to the engineering current densities to account for winding
strain and temperature fluctuations. Depending on the actual mechanical solenoid design
an even larger temperature safety margin may be necessary at higher applied magnetic
fields.

Figure 9 displays the field lines of the resulting solenoid beam transport channel.
Figure 10 shows the axial magnetic field strength along the beam center axis. The field
ripple due to the fairly large magnet spacing, which is necessitated by the wide induction
acceleration gap (1 MV/m gradient), is clearly visible.



                                                                                                                                                      

B
[ T ]

Jc

[ A / mm2 ]
Cu/SC Ratio

(*)
Jwire

[ A / mm2 ]
Joverall

[ A / mm2 ]

with 30%
margin (**)

[ A / mm2 ]

5 9454 6.30 1295 906 634

6 7766 5.18 1257 880 616

7 6431 4.29 1216 851 596

8 5347 3.56 1171 820 574

9 4446 2.96 1122 785 550

10 3689 2.46 1066 746 523

11 3048 2.03 1005 704 493

12 2500 1.67 938 656 459

13 2031 1.35 863 604 423

14 1631 1.09 781 547 383

15 1289 0.86 693 485 340

(*) for a maximum current density of 1500 A/mm2 in the copper matrix
(**) margin for winding strain and temperature fluctuations

Table 1: Engineering current densities (Joverall) for Nb3Sn at different magnetic fields.



                                                                                                                                                      

Figure 9: Magnetic flux lines for a string of solenoids.

Figure 10: Magnetic field along the beam center axis.



                                                                                                                                                      

Figure 11: Comparison of |B| along the beam center axis and along the solenoid inner
radius Indicated is the zone of highest magnetic field inside the solenoid winding.

Figure 11 shows

€ 

B along the beam center axis and along the inner coil radius. The field
non-uniformity must be included in ion optics simulations. Indicated in figure 11 is the
location of the maximum magnetic field for a long solenoid. The solenoid current density
must be below the "engineering" critical current density for the magnetic field
encountered in that region.

Finite element analysis plays an important role in reliably predicting magnetic
fields inside permeable materials. In the above design the iron region around the magnet
winding is fully saturated (magnetic field > 2 Tesla), as can be seen in figure 12. Plotted
in figure 13 is the magnetic field versus radius (at z=0.0, the middle of the solenoid, see
figure 12) for different iron thicknesses. The magnetic field is constant within the
solenoid bore, drops within the winding pack, and reverses its direction in the iron and
the surrounding air. Since the iron is fully saturated it cannot completely shield the
magnetic field return flux from the induction cells and the adjacent structures. With a
4cm return iron yoke the air magnetic field at the location of the induction cells would be
around 0.2 Tesla (see figure 14).

Increasing the iron thickness is the only option to further reduce the return field.
That effect can be seen in figure 14. A significant thickness is required to shield a 12
Tesal solenoid field from the induction cells. Currently it is not clear if total shielding is



                                                                                                                                                      
required to maintain the full flux swing inside the induction cells since the

induction cell magnetization is perpendicular to the solenoid magnetization direction. In
addition, the induction cell magnetization is a transient effect compared to the DC
magnetization caused by the solenoid.

Figure 12: The solenoid iron return yoke is fully saturated.

Figure 13: Magnetic field (in solenoid center) versus radius for different iron thicknesses.
See figure 14 for more details.



                                                                                                                                                      

Figure 14: Solenoid return field in the vicinity of the induction cells for different iron
return yoke thicknesses.
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21. Biot-Savart Formula

The Biot-Savart formula in its generalized form is an integration along the wire
path, and is therefore an attractive tool when the path is mathematically characterized and
there are no permeable materials. It may be used with a CAD program that lays out the

wire path, which in general is a vector position ( )sR , where 

€ 

s is path length measured
along the wire. This is a good way to compute the fields of magnet leads and other
deviations from ideal solenoidal symmetry. The Biot-Savart formula is often presented in



                                                                                                                                                      
texts as an experimental result for a straight wire and then generalized for an arbitrary
wire path. Here we briefly derive it from the magnetostatic Maxwell’s eqns. (2.1a,b). It is
then used to obtain the fields of a straight wire segment of finite length and of a helix.

21.1 General formula

In the absence of magnetic materials the Cartesian components of a static
magnetic field satisfy

€ 

∇2B =

€ 

∇∇ ⋅ B

€ 

−∇x ∇xB( ) = −µ0∇xJ  ,   (21.1)

so the Green function solution is

€ 

B =
µ0
4π

d3 ′ r ∫ ∇′xJ′

r − ′ r 
 .   (21.2)

An integration by parts gives

€ 

B =
µ0
4π

d3 ′ r ∫ J′x∇′ 1
r − ′ r 

€ 

=
µ0
4π

d3∫ ′ r J′x
r − r′
 

 
 

 

 
 

r − r′
3  .   (21.3)

For a wire (of infinitesimal thickness) with path 

€ 

R s( ) carrying current I, this may be
written (Generalized Biot-Savart formula)

€ 

B =
µ0I
4π

ds ˆ e ∫ s( )x
r − R s( )( )
r − R s( )

3 ,   (21.4)

where ( )sê  is the unit vector along the wire in the direction of the current:

( ) ( )
ds

sRd
se =ˆ .   (21.5)



                                                                                                                                                      

That  ê  is a unit vector is apparent from the definition of arc length,

€ 

ds( )2 = dR
2

= dRx( )2 + dRy( )
2

+ dRz( )2 .   (21.6)

      21.2 Straight wire field

First we recover the original result of Biot and Savart for an infinitely long wire
along the z- axis. In this case we have simply

€ 

ˆ e s( ) = ˆ e z, R s( ) = sˆ e z .          (21.7a,b)

Eqn. (21.4) becomes

( )
3

22

0 1
ˆ

4 szr
dsrxe

I
B z

−+
= ∫

+∞

∞−π

µ
 ,   (21.8)

where as usual 222 yxr += . The integration is elementary in this case:

€ 

B =
µ0I
4π

ˆ e z xr
r2

s− z( )
r2 + s− z( )2

−∞

+∞

| =
µ0I
2π

ˆ e z xr
r2 =

µ0I
2πr

ˆ e θ  .   (21.9)

For a semi-infinite wire running from ∞−  to 0 we have

€ 

B =
µ0I
4π

ˆ e θ
r

1− z
r2 + z2

 

 
 

 

 
 , (21.10)

reminiscent of the on-axis field of the semi-infinite thin-layer solenoid treated in section
4. However in this case there must be an additional current path (unspecified here)

leading away from the wire end at 0=z  to avoid a non-zero divergence of J .

A useful generalization of the above example is a straight wire segment between

arbitrary points 1r  and 2r ; we define

2
21 rr

C
+

= = wire center,           (21.11a)



                                                                                                                                                      

12 rrL −= = wire length,           (21.11b)

€ 

ˆ e = r2 − r1

L
= wire direction.           (21.11c)

Then the wire path is

( ) esCsR ˆ+= ,           (21.11d)

with 22 LsL <<− . Eqn. (21.4) becomes

€ 

B =
µ0I
4π

ds
−L 2

L 2

∫ ˆ e x
r − C + s ˆ e ( )[ ]
r − C + s ˆ e ( )

3   . (21.12)

The integration is again elementary, but it helps to employ the definitions

€ 

α = ˆ e ⋅ r −C( ) , β = ˆ e x r −C( ) , (21.13)

with 
2

22 βα +=−Cr . Making the change of variable α−= st , we get from

eqn. (21.12)

     

€ 

B =
µ0I
4π

β

β
2

t

β
2

+ t 2 −L 2−α

L 2−α

|

=
µ0I
4π

β

β
2

L 2 −α( )

β
2

+ L 2 −α( )2
+

L 2 +α

β
2

+ L 2 +α( )2

 

 

 
 
 

 

 

 
 
 
.

(21.14)

This formula may be used for the field from a straight magnet lead. Also, the field of a
complete circuit with curved wired sections can be computed as the sum of fields from
short straight sections, each with specified endpoints and defined quantities 

€ 

C,L, ˆ e ,α,β( ).

21.3 Helix field



                                                                                                                                                      
The path representation of a helix is more complicated; let ρ  be its radius (wire

distance from z -axis), p is the helix pitch angle restricted to 

€ 

0 < p < π 2( ) , and 

€ 

τ  is a

variable proportional to s  such that πτ 20 ≤≤ gives one loop. Then we may write

€ 

Rx = ρcos τ( ), Ry = ρ sin τ( ), Rz = ρτ tan p( ) . (21.15)

We have 

€ 

ds( )2 = dR
2

= ρ2 1+ tan2 p( )[ ] dτ( )2, so we set

€ 

τ =
s

ρ 1+ tan2 p( )
=

s cos p( )
ρ

  , (21.16)

and 

€ 

Rz = s sin P( ) , as expected from the definition of 

€ 

P .

The helix period length is 

€ 

2πρ tan p( ) =1 N , where N  is the number of turns per
meter, so the mean θ -component of surface current density is

NIS = , (21.17)

while the total z-current equals I.

For an infinitely long helix, the on-axis z  component of the field is by symmetry

€ 

B0 z( ) = µ0 S = µ0NI . (21.18)

For ρ>>r  we also have

r

I
B

π

µ
θ 2

0→ . (21.19)

Close to the wire, which has infinitesimal thickness, the field diverges strongly. The on-

axis transverse field does not vanish, but has a constant absolute value with direction

rotating 90  out of phase from the wire path. It is an interesting exercise to visualize the

field lines.

To proceed with the helix field calculation, first note that



                                                                                                                                                      

€ 

ˆ e s( ) =
dR
ds

=
dτ
ds

dR
dτ

= cos p( ) −ˆ e x sin τ( ) + ˆ e y cos τ( ) + ˆ e z tan p( )[ ]  ,

€ 

ˆ e s( )x r − R s( )( ) = cos p( ) ˆ e x z − Rz( )cos τ( ) − y − Ry( ) tan p( )[ ]{
+ ˆ e y x − Rx( ) tan p( ) + z − Rz( )sin τ( )[ ] − ˆ e z y − Ry( )sin τ( ) + x − Rx( )cos τ( )[ ]}. (21.20)

Each Cartesian field component may be projected from eqn. (21.4); for example

€ 

Bz = B ⋅ ˆ e z = −
µ0I
4π

ds∫
cos p( ) y − Ry( )sin τ( ) + x − Rx( )cos τ( )[ ]

x − Rx( )2
+ y − Ry( )

2
+ z − Rz( )2

3   . (21.21)

This may be evaluated by a numerical integration package, using the given definitions of

 ( )sR . It helps to use ( ) ρτ /cos ps=  as the integration variable. A helix might have for
example m periods with mπτ 20 ≤≤  and longitudinal dimension running from z=0 to
z= ( )pm tan2 ρπ . The components xB and yB are found in similar fashion.

For an infinite helix the on-axis longitudinal field is

€ 

Bzo =
µ0I
4π
cos p( ) ds

−∞

+∞

∫
Ry sin τ( ) + Rx cos τ( )[ ]
Rx
2 + Ry

2 + z − Rz( )2
3 (21.22)

€ 

=
µ0I
4π
cos p( ) du

sin p( )−∞

+∞

∫ ρ

ρ2 + u2
3  , (21.23)

where 

€ 

u = Rz − z = s sin p( )− z . The integration is elementary:

€ 

Bzo =
µ0Iρ

4π tan p( )
1
ρ2

u
ρ2 + u2 −∞

+∞

| =
µ0I

2πρ tan p( )
= µ0NI  ,             (21.24)

as advertised in eqn. (21.18).

The transverse fields of a finite or infinite helix are



                                                                                                                                                      

€ 

Bx = B ⋅ˆ e x =
µ0I
4π

ds∫
cos p( ) z − Rz( )cos τ( ) − y − Ry( ) tan p( )[ ]

x − Rx( )2
+ y − Ry( )

2
+ z − Rz( )2

3 ,     (21.25)

€ 

By = B ⋅ˆ e y =
µ0I
4π

ds∫
cos p( ) x − Rx( ) tan p( ) + z − Rz( )sin τ( )[ ]

x − Rx( )2
+ y − Ry( )

2
+ z − Rz( )2

3 . (21.26)

These components may also be evaluated numerically using τ  as the variable of
integration.

The on-axis transverse fields for an infinite helix are

€ 

Bxo =
µ0Icos p( )
4π

ds
−∞

+∞

∫
ρ sin τ( ) tan p( ) + z − τρ tan p( )( )cos τ( )[ ]

ρ2 + z − τρ tan p( )( )2
3 ,  (21.27)

€ 

Byo =
µ0Icos p( )
4π

ds
−∞

+∞

∫
z − τρ tan p( )( )sin τ( ) − ρcos τ( ) tan p( )[ ]

ρ2 + z − τρ tan p( )( )2
3 . (21.28)

Making the change of variable 

€ 

u = Rz − z = s sin p( ) − z  we get

            

€ 

Bxo =
µ0I

4π tan p( )
du

−∞

+∞

∫
ρ tan p( )sin u + z

ρ tan p( )

 

 
 

 

 
 − ucos u + z

ρ tan p( )

 

 
 

 

 
 

 

 
 
 

 

 
 
 

ρ2 + u2
3 ,        (21.29)

€ 

Byo =
−µ0I

4π tan p( )
du

−∞

+∞

∫
usin u + z

ρ tan p( )

 

 
 

 

 
 + ρ tan p( )cos u + z

ρ tan p( )

 

 
 

 

 
 

 

 
 
 

 

 
 
 

ρ2 + u2
3 .                 (21.30)

It is seen that 
0x

B  vanishes at 0=z , ( )ptanπρ± , ( )ptan2πρ± , … , consistent with

the helical symmetry. At the coordinate origin we have, setting ρυ=u ,



                                                                                                                                                      

€ 

By0 0( ) = −
µ0I

2πρ tan p( )
dυ

0

∞

∫
υ sin υ

tan p( )

 

 
 

 

 
 

1+υ 2 3
+

tan p( )cos υ
tan p( )

 

 
 

 

 
 

1+υ 2 3

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(21.31)

( )
( )( )

( )
( )( )








Κ+

Κ
−= p

p

p

p

I
tan1

tan

tan1

tan2 1
00

πρ

µ
 , (21.32)

where 0Κ  and 1Κ are the modified Bessel functions. Setting 

€ 

1 tan p( ) = 2πρN  we have

€ 

By0 0( ) = −µ0IN 2πρN( )Κ0 2πρN( ) +Κ1 2πρN( )[ ]   . (21.33)

Invoking periodicity yields

€ 

B⊥ 0 = By0
0( ) ˆ e y cos τ( ) − ˆ e x sin τ( )[ ] . (21.34)

Generally the parameter 2

€ 

πρN  is much larger that unity, and the Bessel functions
may be expanded; the leading terms gives

€ 

By0 0( ) ≈ − µ0IN( ) π
2

2πρN +
7

8 2πρN

 

 
 

 

 
 e−2πρN , (21.35)

which is usually a very small on-axis effect. For an concrete example set

€ 

N = 20turn m, ρ = .1m( ) , then 

€ 

2πρN =12.566 , and

 

€ 

By0 0( )
−µ0IN

≈
π
2

12.566 +
7

8 12.566
 

 
 

 

 
 e−12.566 ≅ .000017 . (21.36)

22. Single Particle Equations of Motion in an Arbitrary Electromagnetic Field

Although the topic of this report is the calculation of fields, we also include this
brief section on the particle equations of motion. The goal is to have a convenient
reference where these equations are written using longitudinal distance 

€ 

z  as the
independent variable instead of time 

€ 

t . This form displays the geometric aberrations,
which are mixed with field aberrations and are hidden in the more compact time-
dependent formulation.

22.1  Time as the independent variable



                                                                                                                                                      

With time as the independent variable, an ion’s velocity 

€ 

v  satisfies the Lorentz
equation

€ 

d γv( )
dt

=
qe
M

E + vxB( ) , (22.1)

with relativistic factor

€ 

γ = 1− v 2 c 2( )
− 12  

€ 

= 1+ γ 2 v 2 c 2( )
1
2  . (22.2)

Here 

€ 

q is the ion’s charge state, 

€ 

M  is its mass, 

€ 

v = v , and we use the natural constants

€ 

e =1.6022...x10−19C, c = 2.9979...x108m s .

The electric and magnetic fields, 

€ 

E r,t( )  and 

€ 

B r,t( ), are assumed to be known or are

computable.

22.2 Longitudinal distance as the independent variable

For time-dependent, multi-particle simulations it is convenient to use eqn. (22.1)
as it stands, or with 

€ 

γ =1 for non-relativistic cases. However there are situations where it
is preferable to use the longitudinal position 

€ 

z  as the independent variable. One example
is the simulation of an ion source operating in steady state. In principle we may always
use 

€ 

z  instead of 

€ 

t  if there is no turning back of ion orbits. In addition to the particle
variables 

€ 

x z( ),y z( ),vx z( ),vy z( ),vz z( ),v z( ),γ z( ){ } we also calculate 

€ 

t z( ), the time when an

ion is at 

€ 

z . The fields the ion experiences are then

€ 

B = B r z( ),t z( )( ), E = E r z( ),t z( )( ).          (22.3a,b)

The time derivative in eqn. (22.1) is converted to a 

€ 

z -derivative by the relation

€ 

d
dt

= vz
d
dz

 . (22.4)

Derivatives with respect to 

€ 

z  are denoted here by a “prime”, i.e. 

€ 

′ x z( ) = dx dz , etc. Then
we get



                                                                                                                                                      

€ 

vx =
dx
dt

= vz
dx
dz

= vz ′ x ,

vy =
dy
dt

= vz
dy
dz

= vz ′ y .
         (22.5a,b)

The absolute velocity is

€ 

v z( ) = vx
2 + vy

2 + vz
2 ,   (22.6)

so substituting from eqn. (22.5) (assuming 

€ 

vz > 0):

€ 

vz =
v z( )

1+ ′ x 2 + ′ y 2
 . (22.7)

The time derivative may therefore be written

€ 

d
dt

=
v z( )

1+ ′ x 2 + ′ y 2
d
dz

 . (22.8)

The factor

€ 

1+ ′ x 2 + ′ y 2  in eqns. (22.7, 22.8), which we will denote by 

€ 

... , is the cause
of the geometric aberrations for transport close to the 

€ 

z  axis.

Eliminating time, eqn. (20.1) yields

€ 

v
...

d
dz

γv
...

dx
dz

=
qe
M

Ex +
v ′ y 
...

Bz −
v
...

By

 

 
 

 

 
 ,

v
...

d
dz

γv
...

dy
dz

=
qe
M

Ey +
v
...

Bx −
v ′ x 
...

Bz

 

 
 

 

 
 .

         (22.9a,b)

We also need an equation for 

€ 

γ  (or equivalently 

€ 

v  or 

€ 

γv ). From eqns. (22.1) and (22.2)
we derive

€ 

d
dt
γ =

qe
Mc2

v ⋅ E, (22.10)

which becomes

€ 

dγ
dz

=
qe

Mc2
′ x Ex + ′ y Ey + Ez( ) ,           (22.11a)

or equivalently



                                                                                                                                                      

€ 

dv
dz

=
qe
M

1
γ 3v

′ x Ex + ′ y Ey + Ez( ) ,

dγv
dz

=
qe
M
1
v

′ x Ex + ′ y Ey + Ez( ) .
       (22.11b,c)

The equation for time is simply

€ 

dt
dz

=
1
vz

=
...
v

. (22.12)

Eqns. (22.9a.b) are of an awkward form since, due to the differentiation of 

€ 

... ,
the second derivatives 

€ 

′ ′ x  and 

€ 

′ ′ y  appear together. A simplification is realized when these
equations are combined linearly to place these second derivatives in separate equations. It
also helps to eliminate 

€ 

d γv( ) dz  using eqn. (22.11c). These steps finally yield after some
algebra:

€ 

′ ′ x =
qe
M

1
γv2

...
2

Ex − ′ x Ez( ) + v ... ′ x ′ y Bx − 1+ ′ x 2( )By + ′ y Bz[ ]{ },   (22.13a)

€ 

′ ′ y =
qe
M

1
γv2

...
2

Ey − ′ y Ez( ) + v ... − ′ x ′ y By + 1+ ′ y 2( )Bx − ′ x Bz[ ]{ } . (22.13b)

Eqns. (22.11),  (22.12), and (22.13) are valid as long as 

€ 

dz dt > 0 ; they contain all
aberrations and may be used with tilted system axes and non-solenoidal fields.

22.3  Paraxial approximation

Often a set of equations is used, in which terms such as 

€ 

′ x 2  are known to be small
and are dropped. This is the “paraxial approximation”, with formal ordering

€ 

d dz ~ ε <<1 and 

€ 

x, y( ) ~ 1:

€ 

qe
M

1
γv2

Ez,vBz( ) ~ ε  ,                       (22.14)

€ 

qe
M

1
γv2

Ex,Ey,vBx,vBy( ) ~ ε2  .             (22.15)

Dropping terms which are explicitly small of order 

€ 

ε2, gives



                                                                                                                                                      

€ 

c 2 dγ
dz

= γ 3v dv
dz

= v dγv
dz

=
qe
M
Εz  , (22.16)

€ 

dt
dz

=
1
v

 , (22.17)

€ 

′ ′ x =
qe
M

1
γv2

Εx − ′ x Εz( ) + v ′ y Bz − By( )[ ]  ,           (22.18a)

€ 

′ ′ y =
qe
M

1
γv2

Εy − ′ y Εz( ) − v ′ x Bz − Bx( )[ ]  .           (22.18b)

Field aberrations are still present in eqns. (22.16, 22-17, 22.18) and these include terms,
which are small in powers of 

€ 

ε, so the paraxial approximation by itself is not a consistent
ordering.


